Advertisement

Psychometrika

, Volume 49, Issue 2, pp 175–186 | Cite as

A general latent trait model for response processes

  • Susan Embretson (Whitely)
Article

Abstract

The purpose of the current paper is to propose a general multicomponent latent trait model (GLTM) for response processes. The proposed model combines the linear logistic latent trait (LLTM) with the multicomponent latent trait model (MLTM). As with both LLTM and MLTM, the general multicomponent latent trait model can be used to (1) test hypotheses about the theoretical variables that underlie response difficulty and (2) estimate parameters that describe test items by basic substantive properties. However, GLTM contains both component outcomes and complexity factors in a single model and may be applied to data that neither LLTM nor MLTM can handle. Joint maximum likelihood estimators are presented for the parameters of GLTM and an application to cognitive test items is described.

Key words

latent trait models item response theory aptitude process model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, E. B. (1980).Discrete statistical models with social science applications. Amsterdam: North-Holland Publishing Company.Google Scholar
  2. Carroll, J. B. (1976). Psychometric tests as cognitive tasks: A new “structure of intellect” In L. B. Resnick (Ed.),The nature of intelligence. New York: Lawrence Erlbaum Associates.Google Scholar
  3. Cliff, N. (1977). Further study of cognitive processing models for inventory response.Applied Psychological Measurement, 1, 41–49.Google Scholar
  4. Cliff, N., Bradley, P., & Girard, R. (1973). The investigation of cognitive models for inventory response.Multivariate Behavioral Research, 8, 407–425.Google Scholar
  5. Cognitive Abilities Test. (1978). Lombard, Illinois: Riverside Publishing Company.Google Scholar
  6. Embretson (Whitely), S. (1983). Construct validity: Construct representation versus nomothetic span.Psychological Bulletin, 93, 179–197.Google Scholar
  7. Fischer, G. (1973). Linear logistic test model as an instrument in educational research.Acta Psychologica, 37, 359–374.Google Scholar
  8. Fischer, G. H. (1981). On the existence and uniqueness of maximum-likelihood estimates in the Rasch model.Psychometrika, 46, 59–77.Google Scholar
  9. Fischer, G., & Formann, A. K. (1982). Same applications of logistic latent trait models with linear constraints on the parameters.Applied Psychological Measurement, 6, 397–416.Google Scholar
  10. Hunt, E. (1978). Mechanics of verbal ability.Psychological Review, 85, 109–130.Google Scholar
  11. Lord, F. N. & Novick, M. R. (1968).Statistical theories of mental test scores. Reading, Mass.: Addison-Wesley.Google Scholar
  12. Mulholland, T. M. (1980). Pellegrino, J. W. & Glaser, R. Components of geometric analogy solution.Cognitive Psychology, 12, 252–284.Google Scholar
  13. Pachella, R. G. (1974). The interpretation of reaction time in information-processing research. In B. Kantowitz (B 1)Human information-processing. Tutorials in performance and cognition. Hillsdale, N.J.: Eilbaum, pp. 41–82.Google Scholar
  14. Pellegrino, J. W., & Glaser, R. (1979). Cognitive correlates and components in the analysis of individual differences.Intelligence, 3, 187–214.Google Scholar
  15. Pellegrino, J. W., & Lyon, D. R. (1979). The components of a componential analysis.Intelligence, 3, 169–186.Google Scholar
  16. Rasch, G. (1960).Probabilistic models for some intelligence and attainment tests. Copenhagen: Danish Institute for Educational Research.Google Scholar
  17. Reitman, W. (1965).Cognition and thought. New York: Wiley.Google Scholar
  18. Sternberg, R. S. (1977).Intelligence, information processing and analogical reasoning. Hillsdale: New Jersey, Chap. 4.Google Scholar
  19. Sternberg, S. (1969). Memory-scanning: Mental processes revealed by reaction time experiments.American Scientist, 4, 412–457.Google Scholar
  20. Thissen, D. (1981). Marginal maximum likelihood estimation for the one-parameter logistic model.Psychometrika, 47, 175–186.Google Scholar
  21. Whitely, S. E. (1981). Measuring aptitude processes with multicomponent latent trait models.Journal of Educational Measurement, 18, 67–84.Google Scholar
  22. Whitely, S. E. (1980). Multicomponent latent trait models for ability tests.Psychometrika, 45, 479–494.Google Scholar
  23. Whitely, S. E., & Barnes, G. M. (1979). The implications of processing event sequences for theories of analogical reasoning,Memory and Cognition, 7, 323–331.Google Scholar
  24. Whitely, S. E., & Curtright, C. (1980). Performance and stimulus complexity norms for verbal analogy test items. Technical Report NIE-80-4 for National Institute on Education. Lawrence, Kansas: University of Kansas.Google Scholar
  25. Whitely, S. E., & Nieh, K. (1981). Program MULTICOMP: Unpublished manuscript, University of Kansas, Lawrence, Kansas.Google Scholar
  26. Whitely, S. E., & Schneider, L. M. (1981). Information structure on geometric analogies: A test theory approach.Applied Psychological Measurement, 5, 383–397.Google Scholar

Copyright information

© The Psychometric Society 1984

Authors and Affiliations

  • Susan Embretson (Whitely)
    • 1
  1. 1.Department of PsychologyUniversity of KansasLawrence

Personalised recommendations