Psychometrika

, Volume 50, Issue 1, pp 133–140 | Cite as

Review

  • J. Douglas Carroll
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beals, R., Krantz, D. H., & Tversky, A. (1968). Foundations of multidimensional scaling.Psychological Review, 75, 127–142.Google Scholar
  2. Bentler, P. M., & Weeks, D. G. (1978). Restricted multidimensional scaling methods.Journal of Mathematical Psychology, 17, 138–151.Google Scholar
  3. Bloxom, B. Constrained multidimensional scaling inN spaces. (1978).Psychometrika, 43, 397–408.Google Scholar
  4. Borg, I., & Lingoes, J. C. (1980). A model and algorithm for multidimensional scaling with external constraints on the distances.Psychometrika, 45, 25–38.Google Scholar
  5. Carroll, J. D. (1972). Individual differences and multidimensional scaling. In R. N. Shepard, A. K. Romney, & S. Nerlove (Eds.),Multidimensional scaling: Theory and applications in the behavioral sciences (Vol I). (pp. 105–155). New York & London: Seminar Press.Google Scholar
  6. Carroll, J. D. (1980). Models and methods for multidimensional analysis of preferential choice (or other dominance) data. In E. D. Lantermann & H. Feger (Eds.),Similarity and choice (pp. 234–289). Bern: Hans Huber Publishers.Google Scholar
  7. Carroll, J. D., & Arabie, P. (1980). Multidimensional scaling. In M. R. Rosenzweig & L. W. Porter (Eds.),Annual Review of Psychology, 31, 607–649.Google Scholar
  8. Carroll, J. D., & Chang, J. J. (1973). A method for fitting a class of hierarchical tree structure models to dissimilarities data and its application to some “body parts” data of Miller's.Proceedings of the 81st Annual Convention of the American Psychological Association, 8, 1097–1098.Google Scholar
  9. Carroll, J. D., & Pruzansky, S. (1980). Discrete and hybrid scaling models. In E. D. Lantermann & H. Feger (Eds.),Similarity and choice (pp. 108–139). Bern: Hans Huber.Google Scholar
  10. Carroll, J. D., Pruzansky, S., & Kruskal, J. B. (1980). CANDELINC: A general approach to multidimensional analysis of many-way arrays with linear constraints on parameters.Psychometrika, 45, 3–24.Google Scholar
  11. Carroll, J. D., & Wish, M. (1974). Models and methods for three-way multidimensional scaling. In D. H. Krantz, R. C. Atkinson, R. D. Luce, & P. Suppes (Eds.),Contemporary developments in mathematical psychology (Vol. II) (pp. 57–105). San Francisco: Freeman.Google Scholar
  12. Coxon, A. (1982).The user's guide to multidimensional scaling. Exeter, New Hampshire: Heinemann.Google Scholar
  13. Cunningham, J. P. (1978). Free trees and bidirectional trees as representations of psychological distance.Journal of Mathematical Psychology, 17, 165–188.Google Scholar
  14. Davies, P., & Coxon, A. (1982).Key texts on multidimensional scaling. Exeter, New Hampshire: Heinemann.Google Scholar
  15. de Leeuw, J., & Heiser, W. (1980). Multidimensional scaling with restrictions on the configuration. In P. R. Krishnaiah (Ed.),Multivariate analysis, Vol. 5. Amsterdam: North-Holland.Google Scholar
  16. Gower, J. C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis.Biometrika, 53, 325–388.Google Scholar
  17. Green, P. E., & Carmone, F. J. (1970).Multidimensional scaling and related techniques in marketing analysis. Boston: Allyn & Bacon.Google Scholar
  18. Green, P. E., & Rao, V. R. (1972).Applied Multidimensional Scaling: A Comparison of Approaches and Algorithms. New York: Holt, Rinehart & Winston.Google Scholar
  19. Guttman, L. (1968). A general nonmetric technique for finding the smallest coordinate space for a configuration of points.Psychometrika, 33, 465–506.Google Scholar
  20. Heiser, W. J., & DeLeeuw, J. (1979). How to use SMACOF-III. Leiden: Dept. of Datatheory.Google Scholar
  21. Horan, C. B. (1969). Multidimensional scaling: Combining observations when individuals have different perceptual structures.Psychometrika, 34, 139–165.Google Scholar
  22. Krantz, D. H., & Tversky, A. (1975). Similarity of rectangles: An analysis of subjective dimensions.Journal of Mathematical Psychology, 12, 4–34.Google Scholar
  23. Kruskal, J. B. (1964a). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.Psychometrika, 29, 1–27.Google Scholar
  24. Kruskal, J. B. (1964b). Nonmetric multidimensional scaling: A numerical method.Psychometrika, 29, 115–129.Google Scholar
  25. Kruskal, J. B., & Wish, M. (1978).Multidimensional Scaling. Beverly Hills: Sage.Google Scholar
  26. Kruskal, J. B., Young, F. W., & Seery, J. B. (1977). How to use KYST 2-A: A very flexible program to do multidimensional scaling and unfolding. Unpublished manuscript, Bell Labs, Murray Hill, NJ.Google Scholar
  27. Lingoes, J. C. (1972). A general survey of the Guttman-Lingoes nonmetric program series. In R. N. Shepard, A. K. Romney, & S. B. Nerlove (Eds.),Multidimensional Scaling: Theory and Application in the Behavioral Sciences, Vol. 1: Theory. New York: Seminar.Google Scholar
  28. Ramsay, J. O. (1977). Maximum likelihood estimation in multidimensional scaling.Psychometrika, 42, 241–266.Google Scholar
  29. Ramsay, J. O. (1980). Some small sample results for maximum likelihood estimation in multidimensional scaling.Psychometrika, 45, 139–144.Google Scholar
  30. Richardson, M. W. (1938). Multidimensional psychophysics.Psychological Bulletin, 35, 659–660.Google Scholar
  31. Romney, A. K., Shepard, R. N., & Nerlove, S. B. (1972).Multidimensional Scaling: Theory and Applications in the Behavioral Sciences. Vol. 2: Applications. New York: Seminar.Google Scholar
  32. Roskam, E. E.A documentation of MINISSA (N) (Technical Report 25 MA 15) Nijmegen, The Netherlands: Catholic University, Dept. of Psychology.Google Scholar
  33. Sattath, S., & Tversky, A. (1977). Additive similarity trees.Psychometrika, 42, 319–345.Google Scholar
  34. Schiffman, S. S., Reynolds, M. L., & Young, F. W. (1981).Introduction to multidimensional scaling. New York: Academic Press.Google Scholar
  35. Shepard, R. N. (1962a). Analysis of proximities Multidimensional scaling with an unknown distance function—I.Psychometrika, 27, 125–140.Google Scholar
  36. Shepard, R. N. (1962b). Analysis of proximities: Multidimensional scaling with an unknown distance function—II.Psychometrika, 27, 219–246.Google Scholar
  37. Shepard, R. N. (1974). Representation of structure in similarity data: Problems and prospects.Psychometrika, 39, 373–421.Google Scholar
  38. Shepard, R. N. (1980). Multidimensional scaling, tree-fitting, and clustering.Science, 210, 390–398.Google Scholar
  39. Shepard, R. N., & Arabie, P. (1979). Additive clustering. Representation of similarities as combinations of discrete overlapping properties.Psychological Review, 86, 87–123.Google Scholar
  40. Shepard, R. N., Romney, A. K., & Nerlove, S. B. (1972).Multidimensional Scaling: Theory and Applications in the Behavioral Sciences, Vol. 1: Theory. New York: Seminar.Google Scholar
  41. Takane, Y. (1981). Multidimensional successive-categories scaling: A maximum likelihood method.Psychometrika, 46, 9–28.Google Scholar
  42. Takane, Y., Young, F. W., & DeLeeuw, J. (1977). Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features.Psychometrika, 42, 7–67.Google Scholar
  43. Torgerson, W. S. (1958).Theory and methods of scaling. New York: Wiley.Google Scholar
  44. Tucker, L. R. (1972). Relations between multidimensional scaling and three-mode factor analysis.Psychometrika, 37, 3–28.Google Scholar
  45. Tversky, A. (1977). Features of similarity.Psychological Review, 84, 327–352.Google Scholar
  46. Young, G., & Householder, A. S. (1938). Discussion of a set of points in terms of their mutual distances.Psychometrika, 3, 19–22.Google Scholar

Copyright information

© The Psychometric Society 1985

Authors and Affiliations

  • J. Douglas Carroll
    • 1
  1. 1.AT & T Bell LaboratoriesUSA

Personalised recommendations