, Volume 43, Issue 1, pp 111–113 | Cite as

Random versus rational strategies for initial configurations in nonmetric multidimensional scaling

  • Phipps Arabie
Notes And Comments


An examination is made concerning the utility and design of studies comparing nonmetric scaling algorithms and their initial configurations, as well as the agreement between the results of such studies. Various practical details of nonmetric scaling are also considered.

Key words

initial configuration optimization Monte Carlo 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference Note

  1. Kruskal, J. B., Young, F. W. & Seery, J. B.How to use KYST, a very flexible program to do multidimensional scaling and unfolding. Murray Hill, NJ: Bell Telephone Laboratories, 1973.Google Scholar


  1. Arabie, P. Concerning Monte Carlo evaluations of nonmetric multidimensional scaling algorithms.Psychometrika, 1973,38, 607–608.Google Scholar
  2. Clark, A. K. Re-evaluation of Monte Carlo studies in nonmetric multidimensional scaling.Psychometrika, 1976,41, 401–403.Google Scholar
  3. Cohen, H. S. & Jones, L. E. The effects of random error and subsampling of dimensions on recovery of configurations by non-metric multidimensional scaling.Psychometrika, 1974,39, 69–90.Google Scholar
  4. Guttman, L. General nonmetric technique for finding smallest coordinate space for a configuration of points.Psychometrika, 1968,33, 469–506.Google Scholar
  5. Klahr, D. A Monte Carlo investigation of the statistical significance of Kruskal's nonmetric scaling procedure.Psychometrika, 1969,34, 319–330.Google Scholar
  6. Kruskal, J. B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.Psychometrika, 1964,29, 1–27. (a)Google Scholar
  7. Kruskal, J. B. Nonmetric multidimensional scaling: A numerical method.Psychometrika, 1964,29, 115–129. (b)Google Scholar
  8. Lingoes, J. C., & Roskam, E. E. A mathematical and empirical analysis of two multidimensional scaling algorithms.Psychometrika Monograph Supplement, 1973,38 (4, pt. 2).Google Scholar
  9. Shepard, R. N. The analysis of proximities: Multidimensional scaling with an unknown distance function. I.Psychometrika, 1962,27, 125–140.Google Scholar
  10. Spaeth, H. J., & Guthery, S. B. The use and utility of the monotone criterion in multidimensional scaling.Multivariate Behavioral Research, 1969,4, 501–515.Google Scholar
  11. Spence, I. A Monte Carlo evaluation of three nonmetric scaling algorithms.Psychometrika, 1972,37, 461–486.Google Scholar
  12. Spence, I. On random rankings in nonmetric scaling.Psychometrika, 1974,39, 267–268.Google Scholar
  13. Spence, I. & Ogilvie, J. C. A table of expected stress values for random rankings in nonmetric multidimensional scaling.Multivariate Behavioral Research, 1973,8, 511–517.Google Scholar
  14. Stenson, H. H., & Knoll, R. L. Goodness of fit for random rankings in Kruskal's nonmetric scaling procedure.Psychological Bulletin, 1969,71, 122–126.Google Scholar
  15. Wagenaar, W. A., & Padmos, P. Quantitative interpretation of stress in Kruskal's multidimensional scaling technique.British Journal of Mathematical and Statistical Psychology, 1971,24, 101–110.Google Scholar
  16. Young, F. W. TORSCA-9: A FORTRAN IV program for nonmetric multidimensional scaling.Behavioral Science, 1968,13, 343–344.Google Scholar

Copyright information

© Psychometric Society 1978

Authors and Affiliations

  • Phipps Arabie
    • 1
  1. 1.Department of Psychology, Elliott HallUniversity of MinnesotaMinneapolis

Personalised recommendations