Advertisement

Psychometrika

, Volume 61, Issue 4, pp 559–599 | Cite as

Gleaning in the field of dual scaling

  • Shizuhiko NishisatoEmail author
Article

Abstract

Some historical background and preliminary technical information are first presented, and then a number of hidden, but important, methodological aspects of dual scaling are illustrated and discussed: normed versus projected weights, the amount of information accounted for by each solution, a perfect solution to the problem of multidimensional unfolding, multidimensional quantification space, graphical display, number-of-option problems, option standardization versus item standardization, and asymmetry of symmetric (dual) scaling. Contrary to the common perception that dual scaling and similar quantification methods are now mathematically transparent, the present study demonstrates how much more needs to be clarified for routine use of the method to arrive at valid conclusions. Data analysis must be carried out in such a way that common sense, intuition and sound logic will prevail.

Key words

singular value decomposition of categorical data incidence data versus dominance data two objectives of dual scaling information contained and explained multidimensional unfolding graphical display multidimensional space missing responses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn (Im), H. (1991).Effects of missing responses in multiple-choice data on dual scaling results. Unpublished doctoral dissertation, The University of Toronto.Google Scholar
  2. Andrews, D. F. (1972). Plots of high dimensional data.Biometrics, 28, 125–136.Google Scholar
  3. Benzécri, J.-P. (1992).Correspondence analysis handbook. New York: Marcel-Dekker.Google Scholar
  4. Benzécri, J.-P. et al. (1973).L'Analyse des Données: II. L'Analyse des Correspondances [Data analysis: II. Correspondence analysis]. Paris: Dunod.Google Scholar
  5. Beltrami, E. (1873). Sulle funzioni bilineari [On the bilinear functions]. In G. Battagline & E. Fergola (Eds.),Giornale di Mathematiche, 11, 98–106.Google Scholar
  6. Bock, R. D. (1956). The selection of judges for preference testing.Psychometrika, 21, 349–366.Google Scholar
  7. Bock, R. D. (1960). Methods and applications of optimal scaling.The University of North Carolina Psychometric Laboratory Research Memorandum, No. 25.Google Scholar
  8. Bouroche, J.-M., & Saporta, G. (1980).L'Analyse des Données [Data analysis]. Paris: Que-Sais-Je?Google Scholar
  9. Bradu, D., & Gabriel, K. R. (1978). The biplot as a diagnostic tool for models of two-way tables.Technometrics, 20, 47–68.Google Scholar
  10. Cailliez, F., & Pagès, (1976).Introduction a l'Analyse des Données [Introduction to data analysis]. Paris: SMASH.Google Scholar
  11. Carroll, J. D. (1972). Individual differences and multidimensional scaling. In R. N. Shepard, A. K. Romney, & S. B. Nerlove (Eds.),Multidimensional scaling: Theory and applications in the behavioral sciences (Vol. 1). New York: Seminar Press.Google Scholar
  12. Carroll, J. D., Green, P. E., & Schaffer, C. M. (1986). Interpoint distance comparisons in correspondence analysis.Journal of Marketing Research, 23, 271–280.Google Scholar
  13. Carroll, J. D., Green, P. E., & Schaffer, C. M. (1987). Comparing interpoint distances in correspondence analysis: A clarification.Journal of Marketing Research, 24, 445–450.Google Scholar
  14. Carroll, J. D., Green, P. E., & Schaffer, C. M. (1989). Reply to Greenacre's commentary on the Carroll-Green-Schaffer scaling of two-way correspondence analysis solutions.Journal of Marketing Research, 26, 3366–368.Google Scholar
  15. Chan, D. (1978).Treatment of missing data by optimal scaling. Unpublished Master of Arts thesis, University of Toronto.Google Scholar
  16. Choulakian, V. (1988). Exploratory analysis of contingency tables by loglinear formulation and generalizations of correspondence analysis.Psychometrika, 53, 235–250.Google Scholar
  17. Coombs, C. H. (1950). Psychological scaling without a unit of measurement.Psychological Review, 57, 148–158.Google Scholar
  18. Coombs, C. H. (1964).A theory of data. New York: Wiley.Google Scholar
  19. Coombs, C. H., & Kao, R. C. (1960). On a connection between factor analysis and multidimensional unfolding.Psychometrika, 25, 219–231.Google Scholar
  20. Cox, T. F., & Cox, M. A. A. (1994).Multidimensional scaling. London: Chapman & Hall.Google Scholar
  21. de Leeuw, J. (1973, 1984).Canonical analysis of categorical data. Leiden: DSWO Press.Google Scholar
  22. de Leeuw, J., Young, F. W., & Takane, Y. (1976). Additive structure in qualitative data: An alternating least squares method with optimal scaling features.Psychometrika, 41, 471–504.Google Scholar
  23. Eckart, C., & Young, G. (1936). The approximation of one matrix by another of lower rank.Psychometrika, 1, 211–218.Google Scholar
  24. Escofier, B., & Pagès, J. (1988).Analyse Factorielles Simples et Multiples: Objectifs, Méthodes et Interprétation [Simple and multiple factorial analysis: Objectives, methods and interpretation]. Paris: Dunod.Google Scholar
  25. Fisher, R. A. (1940). The precision of discriminant functions.Annals of Eugenics, 10, 422–429.Google Scholar
  26. Franke, G. R. (1985). Evaluating measures through data quantification: Applying dual scaling to an advertising copytest.Journal of Business Research, 13, 61–69.Google Scholar
  27. Gabriel, K. R. (1971). The biplot graphical display of matrices with applications to principal component analysis.Biometrika, 58, 453–457.Google Scholar
  28. Gifi, A. (1990).Nonlinear multivariate analysis. New York: Wiley.Google Scholar
  29. Gold, E. M. (1973). Metric unfolding: Data requirements for unique solution and clarification of Schönemann's algorithm.Psychometrika, 38, 555–569.Google Scholar
  30. Good, I. J. (1969). Some applications of the singular decomposition of a matrix.Technometrics, 11, 823–831.Google Scholar
  31. Goodman, L. A. (1985). Correspondence analysis models, log-linear models, and log-bilinear models for the analysis of contingency tables.Bulletin of the International Statistical Institute, 51 (Book 4, 28), 1, 1–14.Google Scholar
  32. Goodman, L. A. (1986). Some useful extensions of the usual correspondence analysis approach and the usual log-linear models approach in the analysis of contingency tables.International Statistical Review, 54, 243–270.Google Scholar
  33. Gower, J. C., & Hand, D. J. (1996).Biplots. London: Chapman & Hall.Google Scholar
  34. Greenacre, M. J. (1984).Theory and applications of correspondence analysis. London: Academic Press.Google Scholar
  35. Greenacre, M. J. (1989). The Carroll-Green-Schaffer scaling in correspondence analysis: A theoretical and empirical approach.Journal of Marketing Research, 26, 358–365.Google Scholar
  36. Greenacre, M. J. (1993).Correspondence analysis in practice. London: Academic Press.Google Scholar
  37. Greenacre, M. J., & Blasius, J. (Eds.). (1994).Correspondence analysis in the social sciences. London: Academic Press.Google Scholar
  38. Greenacre, M. J., & Browne, M. W. (1986). An efficient alternating lease-squares algorithm to perform multidimensional unfolding.Psychometrika, 51, 241–250.Google Scholar
  39. Guttman, L. (1941). The quantification of a class of attributes: A theory and method of scale construction. In The Committee on Social Adjustment (Ed.),The prediction of personal adjustment (pp. 319–348). New York: Social Science Research Council.Google Scholar
  40. Guttman, L. (1946). An approach for quantifying paired comparisons and rank order.Annals of Mathematical Statistics, 17, 144–163.Google Scholar
  41. Guttman, L. (1950). The basis for scalogram analysis. In S. A. Stouffer, et al. (Eds.),Measurement and prediction. Princeton: Princeton University Press.Google Scholar
  42. Hayashi, C. (1950). On the quantification of qualitative data from the mathematico-statistical point of view.Annals of the Institute of Statistical Mathematics, 2, 35–47.Google Scholar
  43. Healy, M. J. R., & Goldstein, H. (1976). An approach to the scaling of categorized attributes.Biometrika, 63, 219–229.Google Scholar
  44. Heiser, W. J. (1981). Unfolding analysis of proximity data. Unpublished doctoral dissertation, Leiden University, The Netherlands.Google Scholar
  45. Heiser, W. J. (1987). Correspondence analysis with least absolute residuals.Computational Statistics and Data Analysis, 5, 337–356.Google Scholar
  46. Heiser, W. J. (1989). Order invariant unfolding analysis under smoothness restrictions. In G. DeSoete, H. Feger, & K. C. Klauer (Eds.)New developments in psychological choice modeling (pp. 3–31). Amsterdam: Elsevier Science Publishers.Google Scholar
  47. Heuer, J. (1979).Selbsmord bei Kindern und Jugendlichen (Suicide by children and youths). Stuttgart, Germany: Ernst Klett Verlag.Google Scholar
  48. Hill, M. O. (1973). Reciprocal averaging: An eigenvector method of ordination.Journal of Ecology, 61, 237–249.Google Scholar
  49. Hill, M. O. (1974). Correspondence analysis: A neglected multivariate method.Applied Statistics, 23, 340–354.Google Scholar
  50. Hirschfeld, H. O. (1935). A connection between correlation and contingency.Cambridge Philosophical Society Proceedings, 31, 520–524.Google Scholar
  51. Hoffman, D. L., & Franke, G. R. (1986). Correspondence analysis: Graphical representation of categorical data in marketing research.Journal of Marketing Research, 23, 213–217.Google Scholar
  52. Hojo, H. (1994). A new method for multidimensional unfolding.Behaviormetrika, 21, 131–147.Google Scholar
  53. Horn, R. A., & Johnson, C. R. (1991).Topics in matrix analysis. Cambridge: Cambridge University Press.Google Scholar
  54. Horn, R. A., & Olkin, I. (1996). When does A*A=B*B, and why does one want to know?Americal Mathematical Monthly, 104, 470–482.Google Scholar
  55. Horst, P. (1935). Measuring complex attitudes.Journal of Social Psychology, 6, 369–374.Google Scholar
  56. Horst, P. (1963).Matrix algebra for social scientists. New York: Holt, Rinehart and Winston.Google Scholar
  57. Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components.Journal of Educational Psychology, 24, 417–441, 498–520.Google Scholar
  58. Hubert, L., & Arabie, P. (1992). Correspondence analysis and optimal structural representations.Psychometrika, 57, 119–140.Google Scholar
  59. Ihm, P., & van Groenewoud, H. (1984). Correspondence analysis and Gaussian ordination.Compstat Lectures, 3, 5–60.Google Scholar
  60. Inukai, Y. (1972).Optimal versus partially optimal scaling of polychotomous items. Unpublished master's thesis, University of Toronto.Google Scholar
  61. Israëls, A. (1987).Eigenvalue techniques for qualitative data. Leiden: DSWO Press.Google Scholar
  62. Iwatsubo, S. (1987).Suryoka no kiso [Foundations of quantification method]. Tokyo: Asakura Shoten.Google Scholar
  63. Jambu, M. (1989).Exploration informatique et statistique des données [Informational and statistical exploration of data]. Paris: Dunod.Google Scholar
  64. Jordan, C. (1874). Mémoire sur les formes bilinieares [Note on bilinear forms].Journal de Mathématiques Pures et Appliquées, Deuxiéme Série, 19, 35–54.Google Scholar
  65. Kalantari, B., Lari, I., Rizzi, A., & Simeone, B. (1993). Sharp bounds for the maximum of the chi-square index in a class of contingency tables with given marginals.Computational Statistics & Data Analysis, 16, 19–34.Google Scholar
  66. Kiers, H. A. L. (1989).Three-way methods for the analysis of qualitative and quantitative two-way data. Leiden: DSWO Press.Google Scholar
  67. Komazawa, T. (1978).Tagenteki data bunseki no kiso [Foundations for multiway data analysis]. Tokyo: Asakura Shoten.Google Scholar
  68. Komazawa, T. (1982).Suryoka riron to data shori [Quantification theory and data processing]. Tokyo: Asakura Shoten.Google Scholar
  69. Koster, J. T. A. (1989).Mathematical aspects of multiple correspondence analysis. Leiden: DSWO Press.Google Scholar
  70. Lancaster, H. O. (1958). The structure of bivariate distributions.Annals of Mathematical Statistics, 29, 719–736.Google Scholar
  71. Lauro, N., & D'Ambra, L. (1984). L'analyse nonsymmetrique des correspondances [Nonsymmetric correspondence analysis]. In E. Diday, M. Jambu, L. Lebart, J. Pagès, & R. Tomassone (Eds.),Data analysis and informatics (Vol. 3, pp. 433–446). Amsterdam: Elsevier Science Publisher.Google Scholar
  72. Lebart, L., Morineau, A., & Fénelon, J.-P. (1979).Traitement des données statistiques [Processing of statistical data]. Paris: Dunod.Google Scholar
  73. Lebart, L., Morineau, A., & Tabard, N. (1977).Techniques de la description statistique [Methods of statistical description]. Paris: Dunod.Google Scholar
  74. Lebart, L., Morineau, A., & Warwick, K. M. (1984).Multivariate descriptive statistical analysis. New York: Wiley.Google Scholar
  75. Marshall, A. W., & Olkin, I. (1979).Inequalities: Theory of majorization and its applications. New York: Academic Press.Google Scholar
  76. Maung, K. (1941). Measurement of association in contingency tables with special reference to the pigmentation of hair and eye colours of Scottish children.Annals of Eugenics, 11, 189–23.Google Scholar
  77. McDonald, R. P. (1968). A unified treatment of the weighting problem.Psychometrika, 33, 351–381.Google Scholar
  78. McDonald, R. P. (1983). Alternative weights and invariant parameters in optimal scaling.Psychometrika, 48, 377–391.Google Scholar
  79. Meulman, J. J. (1982).Homogeneity analysis of incomplete data. Leiden: DSWO Press.Google Scholar
  80. Meulman, J. J. (1986).Distance approach to multivariate analysis. Leiden: DSWO Press.Google Scholar
  81. Mosier, C. I. (1946). Machine methods in scaling by reciprocal averages.Proceedings, Research Forum (pp. 35–39). Endicath, NY: International Business Corporation.Google Scholar
  82. Nishisato, S. (1975).Oyo shinri shakudo ho: shitsuteki data no bunseki to kaishaku [Applied psychological scaling: Analysis and interpretation of qualitative data]. Tokyo: Seishin Shobo.Google Scholar
  83. Nishisato, S. (1978). Optimal scaling of paired comparison and rank-order data: An alternative to Guttman's formulation.Psychometrika, 43, 263–271.Google Scholar
  84. Nishisato, S. (1980).Analysis of categorical data: Dual scaling and its applications. Toronto: University of Toronto Press.Google Scholar
  85. Nishisato, S. (1982).Shitsuteki data no suryoka [Quantification of qualitative Data]. Tokyo: Asakura Shoten.Google Scholar
  86. Nishisato, S. (1984a). Forced classification: A simple application of a quantification method.Psychometrika, 49, 25–36.Google Scholar
  87. Nishisato, S. (1984b). Dual scaling of reciprocal medians.Proceedings of the 32nd Scientific Conference of the Italian Statistical Society (pp. 141–147). Sorrento, Italy: Societa Italiana di Statistica.Google Scholar
  88. Nishisato, S. (1986a).Quantification of categorical data: A bibliography 1075–1986. Toronto: MicroStats.Google Scholar
  89. Nishisato, S. (1986b). Generalized forced classification for quantifying categorical data. In E. Diday, Y. Escoufier, L. Lebart, J. Pages, Y. Schektman & R. Tomassone (Eds.),Data analysis and informatics, IV. Amsterdam: North-Holland, 351–362.Google Scholar
  90. Nishisato, S. (1987). Robust techniques for quantifying categorical data. In I. BN. MacNeil & G. J. Umphrey (Eds.),Foundations of statistical inference (pp. 209–217). Dordrecht: D. Reidel Publishing.Google Scholar
  91. Nishisato, S. (1988a). Assessing the quality of joint graphical display in correspondence analysis and dual scaling. In E. Diday, Y. Escoufier, L. Lebart, J. Pages, Y. Schektman & R. Tomassone (Eds.),Data analysis and informatics, V (pp. 409–416). Amsterdam: North-Holland.Google Scholar
  92. Nishisato, S. (1988b). Forced classification procedure of dual scaling: Its mathematical properties. In H. H. Bock (Ed.),Classification and related methods of data analysis (pp. 523–532). Amsterdam: North-Holland.Google Scholar
  93. Nishisato, S. (1990). Dual scaling of designed experiments. In M. Schader & W. Gaul (Eds.),Knowledge, data and computer-assisted decisions (pp. 115–125). Berlin: Springer-Verlag.Google Scholar
  94. Nishisato, S. (1991). Standardizing multidimensional space for dual scaling.Proceedings of the 20th Annual Meeting of the German Operations Research Society, 584–591.Google Scholar
  95. Nishisato, S. (1993). On quantifying different types of categorical data.Psychometrika, 58, 617–629.Google Scholar
  96. Nishisato, S. (1994).Elements of dual scaling: An introduction to practical data analysis. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  97. Nishisato, S. (1996). Review of M. J. Greenacre & J. Blasius (Eds.), Correspondence analysis in the social sciences. 1994, London: Academic Press.Psychometrika, 61, 181–186.Google Scholar
  98. Nishisato, S. (in press). An interpretable graph for dual scaling of multiple-choice data. In M. J. Greenacre & J. Blasius (Eds.),Visualization of categorical data.Google Scholar
  99. Nishisato, S., & Ahn (IM), H. (1994). When not to analyze data: Decision making on missing responses in dual scaling.Annals of operations research, 55, 361–378.Google Scholar
  100. Nishisato, S., & Nishisato, I. (1984).An introduction to dual scaling. Toronto: MicroStats.Google Scholar
  101. Nishisato, S., & Nishisato, I. (1994).Dual scaling in a nutshell. Toronto: MicroStats.Google Scholar
  102. Nishisato, S., & Sheu, W. J. (1984). A note on dual scaling of successive categories data.Psychometrika, 49, 493–500.Google Scholar
  103. Nishisato, S., & Yamauchi, H. (1974). Principal components of deviation scores and standards scores.Japanese Psychological Research, 16, 162–170.Google Scholar
  104. Novak, T. P., & Hoffman, D. L. (1990). Residual scaling: An alternative to correspondence analysis for the graphical representation of residuals from log-linear models.Multivariate Behavioral Research, 25, 351–370.Google Scholar
  105. Ohsumi, N., Lebart, L., Morineau, A., Warwick, K. M., & Baba, Y. (1994).Multivariate descriptive statistical analysis. Tokyo: Nikka Giren. (in Japanese)Google Scholar
  106. Okamoto, Y. (1995). Unfolding by the criterion of the fourth quantification method.Journal of Behviormetrics, 22, 126–134. (in Japanese with English abstract)Google Scholar
  107. Pearson, K. (1901). On lines and planes of closest fit to systems of points in space.Philosophical Magazine and Journal of Science, Series 6,2, 559–572.Google Scholar
  108. Richardson, M., & Kuder, G. F. (1933). Making a rating scale that measures.Personnel Journal, 12, 36–40.Google Scholar
  109. Rouanet, H., & Le Roux, B. (1993).Analyse des données multidimensionnelles [Multidimensional data analysis]. Paris: Dunod.Google Scholar
  110. Sachs, J. (1994). Robust dual scaling with Tukey's biweight.Applied Psychological Measurement, 18, 301–309.Google Scholar
  111. Saito, T. (1980).Tajigenshakudo kouseiho [Multidimensional scaling]. Tokyo: Asakura Shoten.Google Scholar
  112. Saito, T., & Otsu, T. (1988). A method of optimal scaling for multivariate ordinal data and its extension.Psychometrika, 53, 5–25.Google Scholar
  113. Saporta, G. (1990).Probabilités, analyse des données et statistique [Probabilities, data analysis and statistics]. Paris: Technip.Google Scholar
  114. Schmidt, E. (1907). Zür Theorie der linearen und nichtlinearen Integralgleichungen. Erster Teil. Entwicklung willkürlicher Funktionen nach Systemen vorgeschriebener [On theory of linear and nonlinear integral equations. Part one. Development of arbitrary functions according to prescribed systems].Mathematische Annalen, 63, 433–476.Google Scholar
  115. Schönemann, P. H. (1970). On metric multidimensional unfolding.Psychometrika, 35, 167–176.Google Scholar
  116. Schönemann, P. H., & Wang, M. M. (1972). An individual difference model for the multidimensional analysis of preference data.Psychometrika, 37, 275–309.Google Scholar
  117. Stewart, G. W. (1973).An introduction to matrix computations. New York: Academic Press.Google Scholar
  118. Stewart, G. W. (1993). On the early history of the singular value decomposition.SLAM Review, 35, 551–566.Google Scholar
  119. Takane, Y. (1980a). Analysis of categorizing behavior.Bahaviormetrika, 8, 75–86.Google Scholar
  120. Takane, Y. (1980b).Tajigen shakudoho [Multidimensional scaling]. Tokyo: University of Tokyo Press.Google Scholar
  121. Takane, Y. (1995).Seiyakutsuki shuseibun bunseki-ho [Principal component analysis with constraints]. Tokyo: Asakura Shoten. (in Japanese)Google Scholar
  122. Takane, Y., & Shibayama, T. (1991). Principal component analysis with external information on both subjects and variables.Psychometrika, 56, 97–120.Google Scholar
  123. Takane, Y., Yanai, H., & Mayekawa, S. (1991). Relationships among several methods of linearly constrained correspondence analysis.Psychometrika, 56, 667–684.Google Scholar
  124. Takeuchi, K., Yanai, H., & Mukherjee, B. N. (1982).The foundations of multivariate analysis: A unified approach by means of projection onto linear subspaces. New Delhi: Wiley Eastern.Google Scholar
  125. Tenenhaus, M. (1988). Canonical analysis of two convex polyhedral cones and applications.Psychometrika, 53, 503–524.Google Scholar
  126. Tenenhaus, M. (1994).Méthodes statistiques in gestion [Statistical methods in business]. Paris: Dunod.Google Scholar
  127. Tenenhaus, M., & Young, F. W. (1985). An analysis and synthesis of multiple correspondence analysis, optimal scaling, dual scaling, homogeneity analysis and other methods for quantifying multivariate categorical data.Psychometrika, 50, 91–119.Google Scholar
  128. ter Braak, C. F. (1986). Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis.Ecology, 67, 1167–1179.Google Scholar
  129. Torgerson, W. S. (1958).Theory and methods of scaling. New York: Wiley.Google Scholar
  130. van Buuren, S. (1990).Optimal scaling of time series. Leiden: DSWO Press.Google Scholar
  131. van Buuren, S., & van Rijckevorsel, J. L. A. (1992). Imputation of missing categorical data by maximizing internal consistency.Psychometrika, 57, 567–580.Google Scholar
  132. van der Heijden, P. G. M. (1987).Correspondence analysis of longitudinal categorical data. Leiden: DSWO Press.Google Scholar
  133. van Rijckevorsel, J. L. A. (1987).The application of fuzzy coding and horseshoe in multiple correspondence analysis. Leiden: DSWO Press.Google Scholar
  134. van Rijckevorsel, J. L. A., & de Leeuw, J. (Eds.). (1988).Component and correspondence analysis. New York: Wiley.Google Scholar
  135. Verboon, P. (1994).A robust approach to nonlinear multivariate analysis. Leiden: DSWO Press.Google Scholar
  136. Weller, S. C., & Romney, A. K. (1988).Metric scaling: Correspondence analysis. Newbury Park, CA: Sage.Google Scholar

Copyright information

© The Psychometric Society 1996

Authors and Affiliations

  1. 1.OISE/University of TorontoTorontoCanada

Personalised recommendations