, Volume 48, Issue 2, pp 223–231 | Cite as

A comparison of factor analysis programs in SPSS, BMDP, and SAS

  • Robert MacCallum


Factor analysis programs in SAS, BMDP, and SPSS are discussed and compared in terms of documentation, methods and options available, internal logic, computational accuracy, and results provided. Some problems with respect to logic and output are described. Based on these comparisons, recommendations are offered which include a clear overall preference for SAS, and advice against general use of SPSS for factor analysis.

Key words

computer program packages factor analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong, J. S. Derivation of theory by means of factor analysis or Tom Swift and his electric factor analysis machine.The American Statistician, 1967, 17–21.Google Scholar
  2. Bentler, P. M., & Bonett, D. G. Significance tests and goodness of fit in the analysis of covariance structures.Psychological Bulletin, 1980,88, 588–606.Google Scholar
  3. Dixon, W. J.BMDP Statistical Software—1981. Berkeley, California: University of California Press, 1981.Google Scholar
  4. Guttman, L. Some necessary conditions for common factor analysis.Psychometrika, 1954,19, 149–161.Google Scholar
  5. Harman, H. H.Modern factor analysis. Chicago: University of Chicago Press, 1967.Google Scholar
  6. Harris, C. W. Some Rao-Guttman relationships.Psychometrika, 1962,27, 247–263.Google Scholar
  7. Harris, C. W., & Kaiser, H. F. Oblique factor analytic solutions by orthogonal transformations.Psychometrika, 1964,29, 347–362.Google Scholar
  8. Helwig, J. T., & Council, K. A.SAS User's Guide: 1979 edition. Raleigh, N.C.: SAS Institute, Inc., 1979.Google Scholar
  9. Hendrickson, A. E., & White, P. O. Promax: A quick method for rotation to oblique simple structure.British Journal of Statistical Psychology, 1964,17, 65–70.Google Scholar
  10. Hornik, J. Quantitative analysis of visual perception of printed advertisements.Journal of Advertising Research, 1980,20, 41–48.Google Scholar
  11. Hull, C. H., & Nie, N. H.SPSS Update 7–9. New York: McGraw-Hill, 1981.Google Scholar
  12. Jennrich, R. I., & Sampson, P. F. Rotation for simple loadings.Psychometrika, 1966,31, 313–323.Google Scholar
  13. Kaiser, H. F. A second generation Little Jiffy.Psychometrika, 1970,35, 401–415.Google Scholar
  14. McDonald, R. P., & Burr, E. J. A comparison of four methods of constructing factor scores.Psychometrika, 1967,32, 381–401.Google Scholar
  15. Montanelli, R. G., & Humphreys, L. Latent roots of random data correlation matrices with squared multiple correlations on the diagonal: A Monte Carlo study.Psychometrika, 1976,41, 341–348.Google Scholar
  16. Mulaik, S. A.The foundations of factor analysis. New York: McGraw-Hill, 1972.Google Scholar
  17. Nie, N. H., Hull, C. H., Jenkins, J. G., Steinbrenner, K., & Bent, D. H.SPSS Statistical Package for the Social Sciences. New York: McGraw-Hill, 1975.Google Scholar
  18. SAS Institute Inc.SAS User's Guide: Statistics, 1982 Edition, Cary, NC: SAS Institute Inc., 1982.Google Scholar
  19. Tucker, L. R Relations of factor score estimates to their use.Psychometrika, 1971,36, 427–436.Google Scholar
  20. Tucker, L. R, Koopman, R. F., & Linn, R. L. Evaluation of factor analytic research procedures by means of simulated correlation matrices.Psychometrika, 1969,34, 421–459.Google Scholar
  21. Tucker, L. R, & Lewis, C. A reliability coefficient for maximum likelihood factor analysis.Psychometrika, 1973,38, 1–10.Google Scholar

Copyright information

© The Psychometric society 1983

Authors and Affiliations

  • Robert MacCallum
    • 1
  1. 1.Department of PsychologyOhio State UniversityColumbus

Personalised recommendations