Advertisement

Psychometrika

, Volume 51, Issue 1, pp 65–68 | Cite as

Models, computers and policies: Fifty years of Psychometrika

  • Bert F. Green
50th Anniversary Section

Abstract

Mathematical models have been represented inPsychometrika first in biophysics, then in stochastic models of behavior, and later in computer simulations of behavior. Other specialized journals now attract many articles in these areas, butPsychometrika's policy of broad interest in all aspects of quantitative psychology remains sound. This paper reviewsPsychometrika's coverage of mathematical models and computation, and discusses some matters of editorial policy.

Keywords

Mathematical Model Computer Simulation Public Policy Stochastic Model Statistical Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, R. C. (1957). A stochastic model for rote serial learning.Psychometrika, 22, 87–96.Google Scholar
  2. Atkinson, R. C. (1958). A Markov model for discrimination learning.Psychometrika, 23, 309–322.Google Scholar
  3. Atkinson, R. C. (1961). A generalization of stimulus sampling theory.Psychometrika, 26, 281–290.Google Scholar
  4. Birch, D. (1957). A model for response tendency combination.Psychometrika, 22, 373–380.Google Scholar
  5. Bloxom, B. (1979). Estimating an unobserved component of a serial response time model.Psychometrika, 44, 473–484.Google Scholar
  6. Bush, R. R., & Mosteller, F. (1951). A mathematical model for simple learning.Psychological Review, 58, 313–323.Google Scholar
  7. Estes, W. K. (1950). Toward a statistical theory of learning.Psychological Review, 57, 94–107.Google Scholar
  8. Estes, W. K. (1957). Theory of learning with constant, variable, or contingent probabilities of reinforcement.Psychometrika, 22, 113–132.Google Scholar
  9. Estes, W. K. (1961). New developments in statistical behavior theory: Differential tests of axioms for associative learning.Psychometrika, 26, 73–84.Google Scholar
  10. Feldman, J., & Newell, A. (1961). A note on a class of probability matching models.Psychometrika, 26, 333–338.Google Scholar
  11. Garner, W. R., & McGill, W. J. (1956). The relation between information and variance analysis.Psychometrika, 21, 219–228.Google Scholar
  12. Green, B. F., Jr., (1961). Computer models for cognitive processes.Psychometrika, 26, 85–92.Google Scholar
  13. Greeno, J. G. (1969). An analysis of some conditions for representingN state Markov processes as general all-or-none models.Psychometrika, 34, 461–487.Google Scholar
  14. Gulliksen, H. (1936). The relationship between degree of original learning and degree of transfer.Psychometrika, 1, 37–43.Google Scholar
  15. Gulliksen, H., & Wolfle, D. L. (1938). A theory of learning and transfer: I.Psychometrika, 3, 127–149.Google Scholar
  16. Jones, L. V. (1963). Beyond Babbage.Psychometrika, 28, 315–332.Google Scholar
  17. Kruskal, J. B. (1964a). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.Psychometrika, 29, 1–27.Google Scholar
  18. Kruskal, J. B. (1964b). Nonmetric multidimensional scaling: A numerical method.Psychometrika, 29, 115–129.Google Scholar
  19. Luce, R. D., & Tukey, J. W. (1964). Simultaneous conjoint measurement: A new type of fundamental measurement.Journal of Mathematical Psychology, 1, 1–27.Google Scholar
  20. Miller, G. A. (1952). Finite Markov processes in psychology.Psychometrika, 17, 149–167.Google Scholar
  21. Miller, G. A., & McGill, W. J. (1952). A statistical description of verbal learning.Psychometrika, 17, 369–396.Google Scholar
  22. Restle, F. (1955). Axioms of a theory of discrimination learning.Psychometrika, 20, 201–208.Google Scholar
  23. Ross, J. (1962). Informational coverage and correlational analysis.Psychometrika, 27, 297–306.Google Scholar
  24. Shepard, R. N. (1962a). The analysis of proximities: Multidimensional scaling with an unknown distance function. I.Psychometrika, 27, 125–140.Google Scholar
  25. Shepard, R. N. (1962b). The analysis of proximities: Multidimensional scaling with an unknown distance function. II.Psychometrika, 27, 219–246.Google Scholar
  26. Simon, H. A. (1957). Amounts of fixation and discovery in maze learning behavior.Psychometrika, 22, 261–268.Google Scholar
  27. Simon, H. A. (1962). A note on mathematical models for learning.Psychometrika, 27, 417–418.Google Scholar
  28. Simon, H. A. (1966). A note on Jost's law and exponential forgetting.Psychometrika, 31, 505–506.Google Scholar
  29. Waugh, N. C., & Smith, J. E. K. (1962). A stochastic model for free recall.Psychometrika, 27, 141–154.Google Scholar

Copyright information

© The Psychometric Society 1986

Authors and Affiliations

  • Bert F. Green
    • 1
  1. 1.Department of PsychologyJohns Hopkins UniversityBaltimore

Personalised recommendations