Psychometrika

, Volume 51, Issue 2, pp 251–267

Bayesian estimation of item response curves

  • Robert K. Tsutakawa
  • Hsin Ying Lin
Article

Abstract

Item response curves for a set of binary responses are studied from a Bayesian viewpoint of estimating the item parameters. For the two-parameter logistic model with normally distributed ability, restricted bivariate beta priors are used to illustrate the computation of the posterior mode via the EM algorithm. The procedure is illustrated by data from a mathematics test.

Key words

item responses Bayesian estimation EM algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimator of item parameters: An application of an EM algorithm.Psychometrika, 46, 443–459.Google Scholar
  2. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion).Journal of the Royal Statistical Society, 39(B), 1–38.Google Scholar
  3. Leonard, T. (1975). Bayesian estimation methods for two-way contingency tables.Journal of the Royal Statistical Society, 37(B), 23–37.Google Scholar
  4. Lindley, D. V., & Smith, A. F. M. (1972). Bayes estimates for the linear model (with discussion).Journal of the Royal Statistical Society, 34(B), 1–41.Google Scholar
  5. Lord, F. M. (1980).Applications of item response theory to practical testing problems. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  6. Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters.Journal for the Society of Applied Mathematics, 11, 431–441.Google Scholar
  7. Mislevy, R. J., & Bock, R. D. (1981).BILOG—Maximum Likelihood item analysis and test scoring: LOGISTIC model. Chicago: International Educational Services.Google Scholar
  8. Novick, M. R., Jackson, P. H., Thayer, D. T., & Cole, N. S. (1972). Estimating multiple regressions inm groups: A cross-validation study.British Journal of Mathematical & Statistical Psychology, 25, 33–50.Google Scholar
  9. O'Hagan, A. (1976). On posterior joint and marginal modes.Biometrika, 63, 329–333.Google Scholar
  10. Raiffa, H., & Schlaifer, R. (1961).Applied statistical decision theory. Boston: Harvard University, Division of Research, Graduate School of Business Administration.Google Scholar
  11. Rigdon, S. E., & Tsutakawa, R. K. (1983). Estimation in latent trait models.Psychometrika, 48, 567–574.Google Scholar
  12. Swaminathan, H. (1981). Bayesian estimation in the two-parameter logistic model (Research Report LR-12). Boston: University of Massachusetts, School of Education.Google Scholar
  13. Swaminathan, H., & Gifford, J. A. (1982). Bayesian estimation in the Rasch model.Journal of Educational Statistics, 7, 175–191.Google Scholar
  14. Tsutakawa, R. K. (1984). Estimation of two-parameter logistic item response curves.Journal of Educational Statistics, 9, 263–276.Google Scholar
  15. Tsutakawa, R. K. (1985). Estimation of item parameters and theGEM algorithm. In D. J. Weiss (Ed.),Proceedings of the 1982 Item Response Theory and Computerized Adaptive Testing Conference (pp. 180–188). Minneapolis: University of Minnesota, Department of Psychology.Google Scholar
  16. Wingersky, M. S., Barton, M. A., & Lord, F. M. (1982).LOGIST user's guide. Princeton, NJ: Educational Testing Services.Google Scholar

Copyright information

© The Psychometric Society 1986

Authors and Affiliations

  • Robert K. Tsutakawa
    • 1
  • Hsin Ying Lin
    • 1
  1. 1.Department of StatisticsUniversity of MissouriColumbia

Personalised recommendations