Advertisement

Psychometrika

, Volume 48, Issue 4, pp 493–517 | Cite as

Some contributions to efficient statistics in structural models: Specification and estimation of moment structures

  • P. M. Bentler
Article

Abstract

Current practice in structural modeling of observed continuous random variables is limited to representation systems for first and second moments (e.g., means and covariances), and to distribution theory based on multivariate normality. In psychometrics the multinormality assumption is often incorrect, so that statistical tests on parameters, or model goodness of fit, will frequently be incorrect as well. It is shown that higher order product moments yield important structural information when the distribution of variables is arbitrary. Structural representations are developed for generalizations of the Bentler-Weeks, Jöreskog-Keesling-Wiley, and factor analytic models. Some asymptotically distribution-free efficient estimators for such arbitrary structural models are developed. Limited information estimators are obtained as well. The special case of elliptical distributions that allow nonzero but equal kurtoses for variables is discussed in some detail. The argument is made that multivariate normal theory for covariance structure models should be abandoned in favor of elliptical theory, which is only slightly more difficult to apply in practice but specializes to the traditional case when normality holds. Many open research areas are described.

Key words

structural equations covariance structures moment structures errors in variables factor analysis minimum chi square generalized least squares elliptical distributions asymptotically distribution free 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aigner, D. J., & Goldberger, A. S.Latent variables in socioeconomic models. Amsterdam: North-Holland, 1977.Google Scholar
  2. Aigner, D. J., Hsiao, C., Kapteyn, A., & Wansbeek, T. Latent variable models in econometrics. In Z. Griliches & M. D. Intriligator (Eds.),Handbook of econometrics. Amsterdam: North-Holland, 1983.Google Scholar
  3. Akahira, M., & Takeuchi, K.Asymptotic efficiency of statistical estimators: Concepts and higher order asymptotic efficiency. New York: Springer, 1981.Google Scholar
  4. Bagozzi, R. P.Causal models in marketing. New York: Wiley, 1980.Google Scholar
  5. Barankin, E. W., & Gurland, J. On asymptotically normal, efficient estimators.University of California Publications in Statistics, 1951,1, 89–130.Google Scholar
  6. Bartholomew, D. J. Latent variable models for ordered categorical data.Journal of Econometrics, 1983,22, 229–243.Google Scholar
  7. Bentler, P. M. Multistructure statistical model applied to factor analysis.Multivariate Behavioral Research, 1976,11, 3–25.Google Scholar
  8. Bentler, P. M. Multivariate analysis with latent variables: Causal modeling.Annual Review of Psychology, 1980,31, 419–456.Google Scholar
  9. Bentler, P. M. Linear systems with multiple levels and types of latent variables. In K. G. Jöreskog & H. Wold (Eds.),Systems under indirect observation: Causality, structure, prediction. Part I. Amsterdam: North-Holland, 1982. Pp. 101–130. (a)Google Scholar
  10. Bentler, P. M. Confirmatory factor analysis via noniterative estimation: A fast, inexpensive method.Journal of Marketing Research, 1982,19, 417–424. (b)Google Scholar
  11. Bentler, P. M. Simultaneous equations as moment structure models: With an introduction to latent variable models.Journal of Econometrics, 1983,22, 13–42. (a)Google Scholar
  12. Bentler, P. M. The EQS approach to structural equation models for normal and nonnormal continuous variables. In C. Möbus & W. Schneider (Eds.),Kausalmodelle in den Sozialwissenschaften—zur Analyse von Längschnitt und experimentellen Daten mit LISREL und verwandten Methoden. Bern, Switzerland: Huber, in press, 1983. (b)Google Scholar
  13. Bentler, P. M.Theory and implementation of EQS, a structural equations program. Technical Report, BMDP Statistical Software, 1983. (c)Google Scholar
  14. Bentler, P. M., & Bonett, D. G. Significance tests and goodness of fit in the analysis of covariance structures.Psychological Bulletin, 1980,88, 588–606.Google Scholar
  15. Bentler, P. M., & Dijkstra, T. Efficient estimation via linearization in structural models. In P. R. Krishnaiah (Ed.),Multivariate analysis VI. Amsterdam: North-Holland, in press, 1983.Google Scholar
  16. Bentler, P. M., & Lee, S. Y. Matrix derivatives with chain rule and rules for simple, Hadamard, and Kronecker products.Journal of Mathematical Psychology, 1978,17, 255–262.Google Scholar
  17. Bentler, P. M., & Lee, S. Y. A statistical development of three-mode factor analysis.British Journal of Mathematical and Statistical Psychology, 1979,32, 87–104.Google Scholar
  18. Bentler, P. M., & Lee, S. Y. Covariance structures under polynomial constraints: Applications to correlation and alpha-type structural models.Journal of Educational Statistics, 1983,8, 207–222.Google Scholar
  19. Bentler, P. M., & Peeler, W. H. Models of female orgasm.Archives of Sexual Behavior, 1979,8, 405–423.Google Scholar
  20. Bentler, P. M., & Speckart, G. Models of attitude-behavior relations.Psychological Review, 1979,86, 452–464.Google Scholar
  21. Bentler, P. M., & Speckart, G. Attitudes “cause” behaviors: A structural equation analysis.Journal of Personality and Social Psychology, 1981,40, 226–238.Google Scholar
  22. Bentler, P. M., & Weeks, D. G. Interrelations among models for the analysis of moment structures.Multivariate Behavioral Research, 1979,14, 169–185.Google Scholar
  23. Bentler, P. M., & Weeks, D. G. Linear structural equations with latnet variables.Psychometrika, 1980,45, 289–308.Google Scholar
  24. Bentler, P. M., & Weeks, D. G. Multivariate analysis with latent variables In P. R. Krishnaiah & L. Kanal (Eds.),Handbook of statistics, Vol. 2. Amerdam: North-Holland, 1982. Pp. 747–771.Google Scholar
  25. Beran, R. Testing for ellipsoidal symmetry of a multivariate density.The Annals of Statistics, 1979,7, 150–162.Google Scholar
  26. Berkson, J. Minimum chi-square, not maximum likelihood!The Annals of Statistics, 1980,8, 457–487.Google Scholar
  27. Boomsma, A.On the robustness of LISREL (maximum likelihood estimation) against small sample size and nonnormality. Ph.D. dissertation, University of Groningen, Groningen, 1983.Google Scholar
  28. Browne, M. W. Generalized least squares estimators in the analysis of covariance structures.South African Statistical Journal, 1974,8, 1–24.Google Scholar
  29. Browne, M. W. Covariance structures. In D. M. Hawkins (Ed.),Topics in applied multivariate analysis. London: Cambridge University Press, 1982. Pp. 72–141.Google Scholar
  30. Browne, M. W.The decomposition of multitrait-multimethod matrices. Research Report 83/2. Department of Statistics and Operations Research, University of South Africa, 1983.Google Scholar
  31. Cambanis, S., Huang, S., & Simons, G. On the theory of elliptically contoured distributions.Journal of Multivariate Analysis, 1981,11, 368–385.Google Scholar
  32. Chmielewski, M. A. Elliptically symmetric distributions: A review and bibliography.International Statistical Review, 1981,49, 67–74.Google Scholar
  33. Cook, M. B. Bi-variatek-statistics and cumulants of their joint sampling distribution.Biometrika, 1951,38, 179–195.Google Scholar
  34. de Leeuw, J. Models and methods for the analysis of correlation coefficients.Journal of Econometrics, 1983,22, 113–137.Google Scholar
  35. Dempster, A. P., Laird, N. M., & Rubin, D. B. Iteratively reweighted least squares for linear regression when errors are normal/independent distributed. In P. R. Krishnaiah (Ed.),Multivariate Analysis-V. Amsterdam: North-Holland, 1980. Pp. 35–57.Google Scholar
  36. Dijkstra, T.Latent variables in linear stochastic models. Ph.D. thesis, University of Groningen, 1981.Google Scholar
  37. Dijkstra, T. Some comments on maximum likelihood and partial least squares methods.Journal of Econometrics, 1983,22, 67–90.Google Scholar
  38. Duncan, O. D.Introduction to structural equation models. New York: Academic, 1975.Google Scholar
  39. DuToit, S. H. C.The Analysis of growth curves. Ph.D. Thesis, University of South Africa, 1979.Google Scholar
  40. Efron, B.The jackknife, the bootstrap, and other resampling plans. Philadelphia: SIAM, 1982.Google Scholar
  41. Fang, C., & Krishnaiah, P. R. Asymptotic distributions of functions of the eigenvalues of some random matrices for nonnormal populations.Journal of Multivariate Analysis, 1982,12, 39–63.Google Scholar
  42. Ferguson, T. S. A method of generating best asymptotically normal estimates with application to the estimation of bacterial densities.Annals of Mathematical Statistics, 1958,29, 1046–1062.Google Scholar
  43. Hägglund, G. Factor analysis by instrumental variables methods.Psychometrika, 1982,47, 209–222.Google Scholar
  44. Hartley, H. O., & Booker, A. Nonlinear least squares estimation.Annals of Mathematical Statistics, 1965,36, 638–650.Google Scholar
  45. Huba, G. J., & Bentler, P. M. A developmental theory of drug use: Derivation and assessment of a causal modeling approach. In P. B. Baltes & O. G. Brim, Jr. (Eds.),Lifespan development and behavior, Vol. 4. New York: Academic, 1982. Pp. 147–203. (a)Google Scholar
  46. Huba, G. J., & Bentler, P. M. On the usefulness of latent variable causal modeling in testing theories of naturally occurring events (including adolescent drug use): A rejoinder to Martin.Journal of Personality and Social Psychology, 1982,43, 604–611. (b)Google Scholar
  47. Huba, G. J., & Bentler, P. M. Causal models of the development of law abidance and its relationship to psychosocial factors and drug use. In W. S. Laufer & J. M. Day (Eds.),Personality theory, moral development, and criminal behavior. Lexington, Mass.: Heath, 1983. Pp. 165–215. (a)Google Scholar
  48. Huba, G. J., & Bentler, P. M. Test of a drug use causal model using asymptotically distribution-free methods.Journal of Drug Education, 1983,13, 3–14. (b)Google Scholar
  49. Huba, G. J., & Bentler, P. M.Antecedents and consequences of adolescent drug use: A psychosocial study of development using a causal modeling approach. New York: Plenum, in preparation, 1984.Google Scholar
  50. Hsu, P. L. The limiting distribution of functions of sample means and applications to testing hypotheses.Proceedings of the First Berkeley Symposium in Mathematical Statistics and Probability, 1949. Pp. 359–402.Google Scholar
  51. Ibragimov, I. A., & Has'minskii, R. Z.Statistical estimation: Asymptotic theory. New York: Springer, 1981.Google Scholar
  52. James, L. R., Mulaik, S. A., & Brett, J. M.Causal analysis: Assumptions, models, and data. Beverly Hills: Sage, 1982.Google Scholar
  53. Jennrich, R. I., & Moore, R. H. Maximum likelihood estimation by means of nonlinear least squares.Proceedings of ASA: Statistical Computing, 1975, 57–65.Google Scholar
  54. Jöreskog, K. G. Structural analysis of covariance and correlation matrices.Psychometrika, 1978,43, 443–477.Google Scholar
  55. Jöreskog, K. G., & Goldberger, A. S. Factor analysis by generalized least squares.Psychometrika, 1972,37, 243–260.Google Scholar
  56. Jöreskog, K. G., & Sörbom, D.LISREL V user's guide. Chicago: International Educational Services, 1981.Google Scholar
  57. Jorgensen, B. Maximum likelihood estimation and large sample inference for generalized linear and nonlinear regression models.Biometrika, 1983,70, 19–28.Google Scholar
  58. Kagan, A. M., Linnik, Y. V., & Rao, C. R.Characterization problems in mathematical statistics. New York: Wiley, 1973.Google Scholar
  59. Kaplan, E. L. Tensor notation and the sampling cumulants ofk-statistics.Biometrika, 1952,39, 319–323.Google Scholar
  60. Lee, S. Y., & Bentler, P. M. Some asymptotic properties of constrained generalized least squares estimation in covariance structure models.South African Statistical Journal, 1980,14, 121–136.Google Scholar
  61. Lee, S. Y., & Jennrich, R. I. A study of algorithms for covariance structure analysis with specific comparisons using factor analysis.Psychometrika, 1979,44, 99–113.Google Scholar
  62. Lehmann, E. L.Theory of point estimation. New York: Wiley, 1983.Google Scholar
  63. Maddala, G. S.Limited-dependent and qualitative variables in econometrics. Cambridge: Cambridge University Press, 1983.Google Scholar
  64. Malinvaud, E.Statistical methods of econometrics. Amsterdam: North-Holland, 1980.Google Scholar
  65. Manski, C. F., & McFadden, D.Structural analysis of discrete data with econometric applications. Cambridge, MA: The MIT Press, 1981.Google Scholar
  66. Mardia, K. V. Measures of multivariate skewness and kurtosis with applications.Biometrika, 1970,57, 519–530.Google Scholar
  67. Mardia, K. V. Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies.Sankhya, 1974,B36, 115–128.Google Scholar
  68. McCullagh, P. Quasi-likelihood functions.The Annals of Statistics, 1983,11, 59–67.Google Scholar
  69. McDonald, R. P. A simple comprehensive model for the analysis of covariance structures.British Journal of Mathematical and Statistical Psychology, 1978,31, 59–72.Google Scholar
  70. Mooijaart, A.Factor analysis for non-normal variables. Technical report, Department of Psychology, UCLA, December 1982.Google Scholar
  71. Moore, D. S., & Stubblebine, J. B. Chi-square tests for multivariate normality with application to common stock prices.Communications in Statistics-Theory & Methods, 1981,A10, 713–738.Google Scholar
  72. Muirhead, R. J.Aspects of multivariate statistical theory. New York: Wiley, 1982.Google Scholar
  73. Muirhead, R. J., & Waternaux, C. M. Asymptotic distributions in canonical correlation analysis and other multivariate procedures for nonnormal populations.Biometrika, 1980,67, 31–43.Google Scholar
  74. Muthén, B. Latent variable structural equation modeling with categorical data.Journal of Econometrics, 1983,22, 43–65.Google Scholar
  75. Nel, D. G. On matrix differentition in statistics.South African Statistical Journal, 1980,14, 137–193.Google Scholar
  76. Newcomb, M. D., & Bentler, P. M. Dimensions of subjective female orgasmic responsiveness.Journal of Personality and Social Psychology, 1983,44, 862–873.Google Scholar
  77. Neyman, J. Contributions to the theory of theχ 2 test.Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California, 1949, Pp. 239–273.Google Scholar
  78. Pal, M. Consistent moment estimators of regression coefficients in the presence of errors in variables.Journal of Econometrics, 1980,14, 349–364.Google Scholar
  79. Parr, W. C. Minimum distance estimation: A bibliography.Communications in Statistics: Theory and Methods, 1981,A10, 1205–1224.Google Scholar
  80. Pfanzagl, J. Further results on asymptotic normality I.Metrika, 1972,18, 174–198.Google Scholar
  81. Pfanzagl, J.Contributions to a general asymptotic statistical theory. New York: Springer-Verlag, 1982.Google Scholar
  82. Phillips, P. C. B. The iterated minimum distance estimator and the quasi-maximum likelihood estimator.Econometrica, 1976,44, 449–460.Google Scholar
  83. Rao, C. R. Characterization of the distribution of random variables in linear structural relations.Sankhya, 1966,28A, 251–260.Google Scholar
  84. Rao, C. R.Linear statistical inference and its applications. New York: Wiley, 1973.Google Scholar
  85. Reiersøl, O. Identifiability of a linear relation between variables which are subject to error.Econometrica, 1950,18, 375–389.Google Scholar
  86. Rothenberg, T. J. Approximating the distributions of econometric estimators and test statistics. In Z. Griliches & M. D. Intriligator (Eds.),Handbook of econometrics. Amsterdam: North-Holland, 1983.Google Scholar
  87. Rothenberg, T. J., & Leenders, C. T. Efficient estimation of simultaneous equation systems.Econometrica, 1964,32, 57–76.Google Scholar
  88. Schwager, S. J., & Margolin, B. H. Detection of multivariate normal outliers.The Annals of Statistics, 1982,10, 943–954.Google Scholar
  89. Shapiro, A. Asymptotic distribution theory in the analysis of covariance structures.South African Statistical Journal, 1983,17, 33–81.Google Scholar
  90. Sieber, M., & Bentler, P. M. Kausalmodelle zur Persönlichkeit und dem späteren Konsum legaler und illegaler Drogen.Schweizerische Zeitschrift für Psychologie und Ihre Anwendungen, 1982,41, 1–15.Google Scholar
  91. Sörbom, D. Structural equation models with structured means. In K. G. Jöreskog & H. Wold (Eds.),Systems under indirect observation: Causality, structure, prediction. I. Amsterdam: North-Holland, 1982. Pp. 183–195.Google Scholar
  92. Spearman, C. The proof and measurement of association between two things.American Journal of Psychology, 1904,15, 72–101.Google Scholar
  93. Speckart, G., & Bentler, P. M. Application of attitude-behavior models to varied content domains.Academic Psychology Bulletin, 1982,4, 453–466.Google Scholar
  94. Steiger, J. H., & Hakstian, A. R. The asymptotic distribution of elements of a correlation matrix: Theory and application.British Journal of Mathematical and Statistical Psychology, 1982,35, 208–215.Google Scholar
  95. Tanaka, J. S.Some results on the estimation of covariance structure models. Ph.D. thesis, University of California, Los Angeles, 1983.Google Scholar
  96. Van Praag, B. M. S., Dijkstra, T. K., & Van Velzen, J.Least squares theory based on general distributional assumptions with an application to the incomplete observations problem. Technical Report 83.09, Leyden University, 1983.Google Scholar
  97. Wald, A. Tests of statistical hypotheses concerning several parameters when the number of observations is large.Transactions of the American Mathematical Society, 1943,54, 426–482.Google Scholar
  98. Wedderburn, R. W. M. Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method.Biometrika, 1974,61, 439–447.Google Scholar
  99. Wiley, D. E. The identification problem for structural equation models with unmeasured variables. In A. S. Goldberger & O. D. Duncan (Eds.),Structural equation models in the social sciences. New York: Academic, 1973. Pp. 69–83.Google Scholar

Copyright information

© The Psychometric Society 1983

Authors and Affiliations

  • P. M. Bentler
    • 1
  1. 1.Department of Psychology, Franz HallUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations