Psychometrika

, Volume 46, Issue 4, pp 357–388 | Cite as

Quantitative analysis of qualitative data

  • Forrest W. Young
Article

Abstract

This paper presents an overview of an approach to the quantitative analysis of qualitative data with theoretical and methodological explanations of the two cornerstones of the approach, Alternating Least Squares and Optimal Scaling. Using these two principles, my colleagues and I have extended a variety of analysis procedures originally proposed for quantitative (interval or ratio) data to qualitative (nominal or ordinal) data, including additivity analysis and analysis of variance; multiple and canonical regression; principal components; common factor and three mode factor analysis; and multidimensional scaling. The approach has two advantages: (a) If a least squares procedure is known for analyzing quantitative data, it can be extended to qualitative data; and (b) the resulting algorithm will be convergent. Three completely worked through examples of the additivity analysis procedure and the steps involved in the regression procedures are presented.

Key words

exploratory data analysis descriptive data analysis multivariate data analysis nonmetric data analysis alternating least squares scaling data theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference notes

  1. Tenenhaus, M. Principal components analysis of qualitative variables. Report No. 175/1981. Jouy-en-Josas, France, Centre d'Enseignement Superieur des Affaires, 1981.Google Scholar
  2. Tenenhaus, M. Principal components analysis of qualitative variables. Les Cahiers de Recherche No. 175/1981. Jouy-en-Josas, France, CESA, 1981.Google Scholar
  3. de Leeuw, J. A normalized cone regression approach to alternating least squares algorithms. Unpublished note, University of Leiden, 1977b.Google Scholar
  4. de Leeuw, J., & van Rijkevorsel, J. How to use HOMALS 3. A program for principal components analysis of mixed data which uses the alternating least squares method. Unpublished mimeo, Leiden University, 1976.Google Scholar
  5. Young, F. W., Null, C. H., & De Soete, G. The general Euclidean Model. 1981 (in preparation).Google Scholar

References

  1. Benzecri, J. P.L'analyse des donnees—Tome II: Correspondances Dunod, Paris, 1973.Google Scholar
  2. Benzecri, J. P., Histoire et Prehistoire de l'analyse des donnees; l'analyse des correspondence.Les Cahiers de l'Analyse des Donnees (Volume II), Paris, 1977.Google Scholar
  3. Bock, R. D. Methods and applications of optimal scaling. Psychometric Laboratory Report #25, University of North Carolina, 1960.Google Scholar
  4. Burt, C. The factorial analysis of qualitative data.British Journal of Psychology, Statistical Section, 1950,3, 166–185.Google Scholar
  5. Burt, C. Scale analysis and factor analysis.British Journal of Statistical Psychology, 1953,6, 5–24.Google Scholar
  6. Carroll, J. D., & Chang, J. J. Analysis of individual differences in multi-dimensional scaling via ann-way generalization of “Eckart-Young” decomposition.Psychometrika, 1970,35, 283–319.Google Scholar
  7. Coombs, C. H.A theory of Data. New York: Wiley, 1964.Google Scholar
  8. de Leeuw, J.Canonical analysis of categorical data. University of Leiden, The Netherlands, 1973.Google Scholar
  9. de Leeuw, J. Normalized cone regression. Leiden, The Netherlands: University of Leiden, Data Theory, mimeographed paper, 1975.Google Scholar
  10. de Leeuw, J. Correctness of Kruskal's algorithms for monotone regression with ties.Psychometrika, 1977a,42, 141–144.Google Scholar
  11. de Leeuw, J., Young, F. W., & Takane, Y. Additive structure in qualitative data: An alternating least squares method with optimal scaling features.Psychometrika, 1976,41, 471–503.Google Scholar
  12. Fisher, R.Statistical methods for research workers. (10th ed.) Edinburgh: Oliver and Boyd, 1938.Google Scholar
  13. Gifi, A.Nonlinear multivariate analysis (preliminary version). University of Leiden, Data Theory Department. 1981.Google Scholar
  14. Guttman, L. The quantification of a class of attributes: A theory and method of scale construction. In P. Horst (Ed.)The prediction of personal adjustment. New York: Social Science Research Council, 1941.Google Scholar
  15. Guttman, L. A note on Sir Cyril Burt's “Factorial Analysis of Qualitative Data,”The British Journal of Statistical Psychology, 1953,7, 1–4.Google Scholar
  16. Hageman, L. A., & Porsching, T. A. Aspects of nonlinear block successive over-relaxation.SIAM Journal of Numerical Analysis, 1975,12, 316–335.Google Scholar
  17. Hayashi, C. On the quantification of qualitative data from the mathematico-statistical point of view.Annals of the Institute of Statistical Mathematics, 1950,2, 35–47.Google Scholar
  18. Horan, C. B. Multidimensional scaling: Combining observations when individuals have different perceptual structures.Psychometrika, 1969,34, 139–165.Google Scholar
  19. Kruskal, J. B. Nonmetric multidimensional scaling.Psychometrika, 1964,29, 1–27, 115–129.Google Scholar
  20. Kruskal, J. B. Analysis of factorial experiments by estimating monotone transformations of the data.Journal of the Royal Statistical Society, Series B, 1965,27, 251–263.Google Scholar
  21. Kruskal, J. B., & Carroll, J. D. Geometric models and badness-of-fit functions. In P. R. Krishnaiah (Ed.),Multivariate analysis (Vol. 2). New York: Academic Press, 1969.Google Scholar
  22. Mardia, K. V., Kent, J. T., & Bibby, J. M.Multivariate analysis. London: Academic Press, 1979.Google Scholar
  23. Nishisato, S.Analysis of categorical data: Dual scaling and its applications. University of Toronto Press, 1980.Google Scholar
  24. Roskam, E. E.Metric analysis of ordinal data in psychology. Voorschoten, Holland: VAM, 1968.Google Scholar
  25. Saito, T.Quantification of categorical data by using the generalized variance. Soken Kiyo, Nippon UNIVAC Sogo Kenkyn-Sho, 61–80, 1973.Google Scholar
  26. Sands, R., & Young, F. W. Component models for three-way data: An alternating least squares algorithm with optimal scaling features.Psychometrika, 1980,45, 39–67.Google Scholar
  27. Saporta, G. Liaisons entre plusieurs ensembles de variables et codages de donnes qualitatives. These de Doctorat de 3eme cycle, Paris, 1975.Google Scholar
  28. Takane, Y., Young, F. W., & de Leeuw, J. Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features.Psychometrika, 1977,42, 7–67.Google Scholar
  29. Takane, Y., Young, F. W., & de Leeuw, J. An individual differences additive model: An alternating least squares method with optimal scaling features.Psychometrika, 1980,45, 183–209.Google Scholar
  30. Torgerson, W. S.Theory and methods of scaling. New York: Wiley, 1958.Google Scholar
  31. Wold, H., & Lyttkens, E. Nonlinear iterative partial least squares (NIPALS) estimation procedures.Bulletin ISI, 1969,43, 29–47.Google Scholar
  32. Young, F. W. A model for polynomial conjoint analysis algorithms. In R. N. Shepard, A. K. Romney, & S. Nerlove (Eds.),Multidimensional scaling: Theory and applications in the behavioral sciences. New York: Academic Press, 1972.Google Scholar
  33. Young, F. W. Methods for describing ordinal data with cardinal models.Journal of Mathematical Psychology, 1975a,12, 416–436.Google Scholar
  34. Young, F. W. An asymmetric Euclidian model for multi-process asymmetric data. U.S.-Japan Seminar on Multidimensional Scaling, 1975b.Google Scholar
  35. Young, F. W., de Leeuw, J., & Takane, Y. Multiple (and canonical) regression with a mix of qualitative and quantitative variables: An alternating least squares method with optimal scaling features.Psychometrika, 1976,41, 505–529.Google Scholar
  36. Young, F. W., & Lewyckyj, R.ALSCAL Users Guide. Carrboro, NC; Data Analysis and Theory, 1979.Google Scholar
  37. Young, F. W., & Lewyckyj, R. The ALSCAL procedure. In SAS Supplemental Library User's Guide, Reinhardt, P. (Ed.). SAS Institute, Raleigh, NC, 1980.Google Scholar
  38. Young, F. W., & Null, C. H. Multidimensional scaling of nominal data: The recovery of metric information with ALSCAL.Psychometrika, 1978,43, 367–379.Google Scholar
  39. Young, F. W., Takane, Y., & de Leeuw, J. The principal components of mixed measurement level data; An alternating least squares method with optimal scaling features.Psychometrika, 1978,43, 279–282.Google Scholar
  40. Young, F. W., Takane, Y., & Lewyckyj, R. ALSCAL: A nonmetric multidimensional scaling program with several individual differences options.Behavioral Research Methods and Instrumentation, 1978,10, 451–453.Google Scholar
  41. Young, F. W., Takane, Y., & Lewyckyj, R. ALSCAL: A multidimensional scaling package with several individual differences options.American Statistician, 1980,34, 117–118.Google Scholar
  42. Yule, G. U.An introduction to the theory of statistics. London: Griffin, 1910.Google Scholar

Copyright information

© The Psychometric Society 1981

Authors and Affiliations

  • Forrest W. Young
    • 1
  1. 1.L. L. Thurstone Psychometric LaboratoryUniversity of North Carolina at Chapel HillUSA

Personalised recommendations