Quantitative analysis of qualitative data

Abstract

This paper presents an overview of an approach to the quantitative analysis of qualitative data with theoretical and methodological explanations of the two cornerstones of the approach, Alternating Least Squares and Optimal Scaling. Using these two principles, my colleagues and I have extended a variety of analysis procedures originally proposed for quantitative (interval or ratio) data to qualitative (nominal or ordinal) data, including additivity analysis and analysis of variance; multiple and canonical regression; principal components; common factor and three mode factor analysis; and multidimensional scaling. The approach has two advantages: (a) If a least squares procedure is known for analyzing quantitative data, it can be extended to qualitative data; and (b) the resulting algorithm will be convergent. Three completely worked through examples of the additivity analysis procedure and the steps involved in the regression procedures are presented.

This is a preview of subscription content, log in to check access.

Reference notes

  1. Tenenhaus, M. Principal components analysis of qualitative variables. Report No. 175/1981. Jouy-en-Josas, France, Centre d'Enseignement Superieur des Affaires, 1981.

    Google Scholar 

  2. Tenenhaus, M. Principal components analysis of qualitative variables. Les Cahiers de Recherche No. 175/1981. Jouy-en-Josas, France, CESA, 1981.

    Google Scholar 

  3. de Leeuw, J. A normalized cone regression approach to alternating least squares algorithms. Unpublished note, University of Leiden, 1977b.

  4. de Leeuw, J., & van Rijkevorsel, J. How to use HOMALS 3. A program for principal components analysis of mixed data which uses the alternating least squares method. Unpublished mimeo, Leiden University, 1976.

  5. Young, F. W., Null, C. H., & De Soete, G. The general Euclidean Model. 1981 (in preparation).

References

  1. Benzecri, J. P.L'analyse des donnees—Tome II: Correspondances Dunod, Paris, 1973.

  2. Benzecri, J. P., Histoire et Prehistoire de l'analyse des donnees; l'analyse des correspondence.Les Cahiers de l'Analyse des Donnees (Volume II), Paris, 1977.

  3. Bock, R. D. Methods and applications of optimal scaling. Psychometric Laboratory Report #25, University of North Carolina, 1960.

  4. Burt, C. The factorial analysis of qualitative data.British Journal of Psychology, Statistical Section, 1950,3, 166–185.

    Google Scholar 

  5. Burt, C. Scale analysis and factor analysis.British Journal of Statistical Psychology, 1953,6, 5–24.

    Google Scholar 

  6. Carroll, J. D., & Chang, J. J. Analysis of individual differences in multi-dimensional scaling via ann-way generalization of “Eckart-Young” decomposition.Psychometrika, 1970,35, 283–319.

    Google Scholar 

  7. Coombs, C. H.A theory of Data. New York: Wiley, 1964.

    Google Scholar 

  8. de Leeuw, J.Canonical analysis of categorical data. University of Leiden, The Netherlands, 1973.

    Google Scholar 

  9. de Leeuw, J. Normalized cone regression. Leiden, The Netherlands: University of Leiden, Data Theory, mimeographed paper, 1975.

    Google Scholar 

  10. de Leeuw, J. Correctness of Kruskal's algorithms for monotone regression with ties.Psychometrika, 1977a,42, 141–144.

    Google Scholar 

  11. de Leeuw, J., Young, F. W., & Takane, Y. Additive structure in qualitative data: An alternating least squares method with optimal scaling features.Psychometrika, 1976,41, 471–503.

    Google Scholar 

  12. Fisher, R.Statistical methods for research workers. (10th ed.) Edinburgh: Oliver and Boyd, 1938.

    Google Scholar 

  13. Gifi, A.Nonlinear multivariate analysis (preliminary version). University of Leiden, Data Theory Department. 1981.

  14. Guttman, L. The quantification of a class of attributes: A theory and method of scale construction. In P. Horst (Ed.)The prediction of personal adjustment. New York: Social Science Research Council, 1941.

    Google Scholar 

  15. Guttman, L. A note on Sir Cyril Burt's “Factorial Analysis of Qualitative Data,”The British Journal of Statistical Psychology, 1953,7, 1–4.

    Google Scholar 

  16. Hageman, L. A., & Porsching, T. A. Aspects of nonlinear block successive over-relaxation.SIAM Journal of Numerical Analysis, 1975,12, 316–335.

    Google Scholar 

  17. Hayashi, C. On the quantification of qualitative data from the mathematico-statistical point of view.Annals of the Institute of Statistical Mathematics, 1950,2, 35–47.

    Google Scholar 

  18. Horan, C. B. Multidimensional scaling: Combining observations when individuals have different perceptual structures.Psychometrika, 1969,34, 139–165.

    Google Scholar 

  19. Kruskal, J. B. Nonmetric multidimensional scaling.Psychometrika, 1964,29, 1–27, 115–129.

    Google Scholar 

  20. Kruskal, J. B. Analysis of factorial experiments by estimating monotone transformations of the data.Journal of the Royal Statistical Society, Series B, 1965,27, 251–263.

    Google Scholar 

  21. Kruskal, J. B., & Carroll, J. D. Geometric models and badness-of-fit functions. In P. R. Krishnaiah (Ed.),Multivariate analysis (Vol. 2). New York: Academic Press, 1969.

    Google Scholar 

  22. Mardia, K. V., Kent, J. T., & Bibby, J. M.Multivariate analysis. London: Academic Press, 1979.

    Google Scholar 

  23. Nishisato, S.Analysis of categorical data: Dual scaling and its applications. University of Toronto Press, 1980.

  24. Roskam, E. E.Metric analysis of ordinal data in psychology. Voorschoten, Holland: VAM, 1968.

    Google Scholar 

  25. Saito, T.Quantification of categorical data by using the generalized variance. Soken Kiyo, Nippon UNIVAC Sogo Kenkyn-Sho, 61–80, 1973.

    Google Scholar 

  26. Sands, R., & Young, F. W. Component models for three-way data: An alternating least squares algorithm with optimal scaling features.Psychometrika, 1980,45, 39–67.

    Google Scholar 

  27. Saporta, G. Liaisons entre plusieurs ensembles de variables et codages de donnes qualitatives. These de Doctorat de 3eme cycle, Paris, 1975.

  28. Takane, Y., Young, F. W., & de Leeuw, J. Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features.Psychometrika, 1977,42, 7–67.

    Google Scholar 

  29. Takane, Y., Young, F. W., & de Leeuw, J. An individual differences additive model: An alternating least squares method with optimal scaling features.Psychometrika, 1980,45, 183–209.

    Google Scholar 

  30. Torgerson, W. S.Theory and methods of scaling. New York: Wiley, 1958.

    Google Scholar 

  31. Wold, H., & Lyttkens, E. Nonlinear iterative partial least squares (NIPALS) estimation procedures.Bulletin ISI, 1969,43, 29–47.

    Google Scholar 

  32. Young, F. W. A model for polynomial conjoint analysis algorithms. In R. N. Shepard, A. K. Romney, & S. Nerlove (Eds.),Multidimensional scaling: Theory and applications in the behavioral sciences. New York: Academic Press, 1972.

    Google Scholar 

  33. Young, F. W. Methods for describing ordinal data with cardinal models.Journal of Mathematical Psychology, 1975a,12, 416–436.

    Google Scholar 

  34. Young, F. W. An asymmetric Euclidian model for multi-process asymmetric data. U.S.-Japan Seminar on Multidimensional Scaling, 1975b.

  35. Young, F. W., de Leeuw, J., & Takane, Y. Multiple (and canonical) regression with a mix of qualitative and quantitative variables: An alternating least squares method with optimal scaling features.Psychometrika, 1976,41, 505–529.

    Google Scholar 

  36. Young, F. W., & Lewyckyj, R.ALSCAL Users Guide. Carrboro, NC; Data Analysis and Theory, 1979.

    Google Scholar 

  37. Young, F. W., & Lewyckyj, R. The ALSCAL procedure. In SAS Supplemental Library User's Guide, Reinhardt, P. (Ed.). SAS Institute, Raleigh, NC, 1980.

    Google Scholar 

  38. Young, F. W., & Null, C. H. Multidimensional scaling of nominal data: The recovery of metric information with ALSCAL.Psychometrika, 1978,43, 367–379.

    Google Scholar 

  39. Young, F. W., Takane, Y., & de Leeuw, J. The principal components of mixed measurement level data; An alternating least squares method with optimal scaling features.Psychometrika, 1978,43, 279–282.

    Google Scholar 

  40. Young, F. W., Takane, Y., & Lewyckyj, R. ALSCAL: A nonmetric multidimensional scaling program with several individual differences options.Behavioral Research Methods and Instrumentation, 1978,10, 451–453.

    Google Scholar 

  41. Young, F. W., Takane, Y., & Lewyckyj, R. ALSCAL: A multidimensional scaling package with several individual differences options.American Statistician, 1980,34, 117–118.

    Google Scholar 

  42. Yule, G. U.An introduction to the theory of statistics. London: Griffin, 1910.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Forrest W. Young.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Young, F.W. Quantitative analysis of qualitative data. Psychometrika 46, 357–388 (1981). https://doi.org/10.1007/BF02293796

Download citation

Key words

  • exploratory data analysis
  • descriptive data analysis
  • multivariate data analysis
  • nonmetric data analysis
  • alternating least squares
  • scaling
  • data theory