Acta Applicandae Mathematica

, Volume 4, Issue 1, pp 15–63

A classification of thin shell theories

  • Philippe Destuynder
Article

Abstract

This paper gives a modern mathematical analysis of the relationships between several, different linear shell theories. It also discusses the asymptotic role played by membrane theory. It presents theorems on the existence and uniqueness of solutions of membrane equations depending on the concavity of the surface.

AMS (MOS) subject classification (1980)

34E05 35A05 73K15 73L05 

Key words

Thin shells membrane theory linear shell theory deformations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, R.:Sobolev Spaces, Academic Press, New York, 1976.Google Scholar
  2. 2.
    Antman, S. S. and Osborn, J. E.: ‘The principle of virtual work and integral laws of motion’,Arch. Rat. Mech. Anal. 69 (1979), 231–262.CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bernadou, M. and Ciarlet, P. G.: ‘Sur l'ellipticité du modèle linéaire de coques de W.T. Koiter’,Lecture Notes in Applied Sciences and Engineering, vol. 134, Springer-Verlag, Berlin, pp. 89–136.Google Scholar
  4. 4.
    Brezzi, F.: ‘On the existence, uniqueness and approximation of saddle point problems arising from Lagrangian multipliers’,RAIRO R2, 1974, 129–151.Google Scholar
  5. 5.
    Budiansky, B. and Sanders, J. L.: ‘On the best first order linear shell theory’,Progress in Applied Mechanics, W. Prager Anniversary Volume New York, MacMillan, 1967, pp. 129–140.Google Scholar
  6. 6.
    Choquet-Bruhat, Y., De Witte-Morette, C. and Dillard-Bleick, M.:Analysis Manifolds and Physics, North Holland, Amsterdam, New York, Oxford, 1978.Google Scholar
  7. 7.
    Ciarlet, P. G. and Destuynder, Ph.: ‘A justification of the two-dimensional linear plate model’,J. Mech. 18 (1979).Google Scholar
  8. 8.
    Destuynder, Ph.:Thèse d'état Université de P.M. Curie, Paris, 1980.Google Scholar
  9. 9.
    Destuynder, Ph.: ‘Sur la propagation des fissures dans les plaques minces en flexion’,J. Méc. Théor. Appl. 13 (1982).Google Scholar
  10. 10.
    Dickey, R. W.: ‘Bifurcation problems in nonlinear elasticity’,Research Notes in Mathematics, No. 3, Pitman, London, 1976.Google Scholar
  11. 11.
    Duvaut, G. and Lions, J. L.:Les inéquations en mécanique et en physique, Dunod, Paris, 1973.Google Scholar
  12. 12.
    Friedrichs, K. O. and Dressler, R. F.: ‘A boundary layer theory for elastic plates’,Comm. Pure Appl. Math. XIV (1961), 1, 33.MathSciNetGoogle Scholar
  13. 13.
    Gol'denveizer, A. L.,Theory of Elastic Thin Shells, Pergamon Press, Oxford, 1961.Google Scholar
  14. 14.
    Koiter, W. T.: ‘General theory of shell stability. Thin shell theory’,New Trends and Applications, C.I.S.M. Courses and Lectures 240, Springer-Verlag, Wien, New York, 1980, pp. 65–87.Google Scholar
  15. 15.
    Lions, J. L.: Perturbations singulières dans les problèmes aux limites et en contrôle optimal’,Lectures Notes in Mathematics, vol. 323, Springer-Verlag, Berlin, 1973.Google Scholar
  16. 16.
    Lions, J. L. and Magenes, E.:Problèmes aux Limites non homogènes et applications Vol. 1, Dunod, Paris, 1968.Google Scholar
  17. 17.
    Love, A. E. H.:A Treatise on the Mathematical Theory of Elasticity, 4th edn., Dover Publications, 1927.Google Scholar
  18. 18.
    Lukasiewicz, S.:Local Loads in Plates and Shells, P.W.N. Polish Scientific Publishers Warsaw, Noordhoff Int. Publ., Leyden, 1979.Google Scholar
  19. 19.
    Novozhilov, V. V.:Thin Shell Theory, Walters Noordhoff Publ., Groningen, 1959.Google Scholar
  20. 20.
    Rougée, P.: Thèse d'état, Paris, 1969.Google Scholar
  21. 21.
    Valid, R.:La mécanique des milieux continus et le calcul des structures, Eyrolles, Paris, 1977.Google Scholar
  22. 22.
    Yosida, K.:Functional Analysis, 4th edn., Springer-Verlag, Berlin, 1975.Google Scholar

Copyright information

© D. Reidel Publishing Company 1985

Authors and Affiliations

  • Philippe Destuynder
    • 1
  1. 1.CNRS U.A. 850Laboratoire de Mécanique des Milieux Continus, Ecole Centrale de ParisChatenay-MalabryFrance

Personalised recommendations