Structural Chemistry

, Volume 6, Issue 4–5, pp 323–332 | Cite as

Ab initio studies of peroxynitrite anion-water complexes

  • Hui-Hsu Tsai
  • Tracy P. Hamilton
  • Jyh-Hsin M. Tsai
  • Joseph S. Beckman
Article

Abstract

Quantum mechanical methods have been applied to thecis-ONOO-H2O,cis-ONOO-(H2O)2 andtrans- ONOO-H2O complexes. Equilibrium geometries, binding energies, net atomic charges and vibrational frequencies are presented for several different arrangements. The MØller-Plessett second-order perturbation (MP2) method predicted shorter hydrogen bonds than the SCF method, but the computed Hartree-Fock (HF) binding energies are similar to counterpoise corrected MP2 values. The geometry changes of ONOO and water after solvation are examined. The ONOO and H2O bond length changes follow typical hydrogen bond structural trends, whereas bond angles in ONOO are unaffected when the hydrogen bond is formed, similar to the conclusions from NO 2 -(H2O) n HF/6-31G studies and Monte Carlo simulations. Thecis-ONOO-(H2O) n frequencies are compared with the solution Raman spectrum and with calculations on isolated ONOO.

Key words

Complexes ab initio frequencies binding energies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beckman, J. S.; Beckman, T. W.; Chen, J.; Marshall, P. M.; Freeman, B. A.Proc. Natl. Acad. Sci. (USA) 1990,87, 1620.Google Scholar
  2. 2.
    King, P. A.; Anderson, V. E.; Edwards, J. O.; Gustafson, G.; Plumb, R. C.; Suggs, J. W.J. Am. Chem. Soc. 1992,114, 5430.Google Scholar
  3. 3.
    Koppenol, W. H.; Moreno, J. J.; Pryor, W. A.; Ischiropoulos, H.; Beckman, J. S.Chem. Res. Toxicol. 1992,5, 834.CrossRefGoogle Scholar
  4. 4.
    Crow, J. P.; Spruell, C.; Chen, J.; Gunn, C.; Ischiropoulos, H.; Tsai, M.; Smith, C. D.; Radi, R.; Koppenol, W. H.; Beckman, J. S.Free Radical Biol. Med. 1994,16, 331.CrossRefGoogle Scholar
  5. 5.
    Beckan, J. S.; Ichiropoulos, H.; Zhu, L.; van der Woerd, M.; Smith, C.; Chen, J.; Harrison, J.; Martin, J. C.; Tsai, M.Arch. Biochem. Biophys. 1992,298, 438.Google Scholar
  6. 6.
    Hughes, M. N.; Nicklin, H. G.J. Chem. Soc. (A) 1968, 450.Google Scholar
  7. 7.
    Shen, M.; Xie, Y.; Schaefer III, H. F.; Deakyne, C. A.J. Chem. Phys. 1990,93, 3379.Google Scholar
  8. 8.
    Koppenol, W. H.; Klasinc, L.Int. J. Quantum Chem. 1993,20, 1.Google Scholar
  9. 9.
    Krauss, M.Chem. Phys. Lett. 1994,222, 513.CrossRefGoogle Scholar
  10. 10.
    Tsai, J.-H. M.; Harrison, J. G.; Martin, J. C.; Hamilton, T. P.; van der Woerd, M.; Jablonsky, M. J.; Beckman, J. S.J. Am. Chem. Soc. 1994,116, 4115.CrossRefGoogle Scholar
  11. 11.
    Hamilton, T. P.; Tsai, H.-H.; Tsai, J.-H., van der Woerd, M.; Harrison. J. G.; Jablonsky, M. J.; Beckman, J. S., submitted toJ. Phys. Chem. Google Scholar
  12. 12. (a)
    Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A.J. Chem. Phys. 1980,72, 650.Google Scholar
  13. 12. (b)
    Clark, T.; Chandresekhar, J.; Spitznagel, G. W.; Schleyer, P. v. R.J. Comp. Chem. 1983,4, 294; Frisch, M. J.; Pople, J. A.; Binkley, J. S.J. Chem. Phys. 1984,80, 3265.Google Scholar
  14. 13. (a)
    Bartlett, R. J.; Silver, D. M.J. Chem. Phys. 1975,62, 3258.CrossRefGoogle Scholar
  15. 13. (b)
    MØller, C.; Plesset, M. S.Phys. Rev. 1934,46, 618.CrossRefGoogle Scholar
  16. 14. (a)
    Pulay, P.Mol. Phys. 1969,17, 197.Google Scholar
  17. 14. (b)
    Pople, J. A.; Krishnan, R.; Schlegel, H. B.; Binkley, J. S.Int. J. Quant. Chem. 1979,S13, 325.Google Scholar
  18. 15. (a)
    Handy, N. C.; Amas, R. D.; Gaw, J. F.; Rice, J. E.; Simandiras, E. D.CPL 1985,120, 151Google Scholar
  19. 15. (b)
    Pople, J. A.; Krishnan, R.; Schlegel, H. B.; Binkley, J. S.Int. J. Quant. Chem. 1979,S13, 325.Google Scholar
  20. 16.
    Boys, S. F.; Bernardi, F.Mol. Phys. 1970,19, 558.Google Scholar
  21. 17.
    Hobza, P.; Zahradnik, R.Chem. Rev. 1988,88, 871.CrossRefGoogle Scholar
  22. 18.
    Frisch, M. J.; Del Bene, J. E.; Binkley, J. S.; Schaefer III, H. F.J. Chem. Phys. 1986,84, 2279.Google Scholar
  23. 19.
    Schwenke, D. W.; Truhlar, D. G.J. Chem. Phys. 1985,82, 2418.CrossRefGoogle Scholar
  24. 20.
    Gaussian 92/DFT, Revision G.2, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. W. Wong, J. B. Foresman, M.A. Robb, M. Head-Gordon, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart, and J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1993.Google Scholar
  25. 21.
    Huheey, J. E.; Keiter, E. A.; Keiter, R. L.Inorganic Chemistry, 4th ed.; HarperCollins: New York, 1993.Google Scholar
  26. 22.
    Beyer, A.; Karpfen, A.; Schuster, P.Topics in Current Chemistry, Vol. 120.Hydrogen Bonds; Springer-Verlag: Berlin, 1984; p 1.Google Scholar
  27. 23.
    Vinogradov, S. N.; Linnell, R. H.Hydrogen Bonding; Van Nostrand Reinhold: New York, 1971; p 178.Google Scholar
  28. 24.
    Howell, J. M.; Sapse, A. M.; Singman, E.; Snyder, G.J. Phys. Chem. 1982,86, 2345.CrossRefGoogle Scholar
  29. 25.
    Banerjee, A.; Shepard, R.; Simons, J.J. Chem. Phys. 1980,73, 1814.CrossRefGoogle Scholar
  30. 26.
    Chakrovorty, S. J.; Davidson, E. R.J. Phys. Chem. 1993,97, 6373.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Hui-Hsu Tsai
    • 1
  • Tracy P. Hamilton
    • 1
  • Jyh-Hsin M. Tsai
    • 2
    • 3
  • Joseph S. Beckman
    • 3
  1. 1.Department of ChemistryUniversity of AlabamaBirmingham
  2. 2.Department of PhysicsUniversity of AlabamaBirmingham
  3. 3.Department of AnesthesiologyUniversity of AlabamaBirmingham

Personalised recommendations