Chromatographia

, Volume 43, Issue 11–12, pp 659–662 | Cite as

Determination of the binding of β-cyclodextrin derivatives to adamantane carboxylic acids using capillary electrophoresis

  • E. -S. Kwak
  • F. A. Gomez
Originals

Summary

Binding constants between adamantane carboxylic acids and β-cyclodextrin derivatives were determined by capillary electrophoresis (CE) using indirect detection. In this procedure, a mixture of adamantane derivative and non-interacting anionic standards, is injected and analysis of the electrophoretic mobility, relative to the noninteracting anionic standards, as a function of the concentration of cyclodextrin, yields values for their binding constants to the adamantane derivative. The usefulness of the method for quantification of binding constants is demonstrated.

Key Words

Capillary electrophoresis Adamantane derivatives 3-Cyclodextrin Indirect detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. G. Hassan, H. Renck, B. Lindberg, H. Lindquist, B. Aackerman, Acta Anaestesiol. Scand.29, 380 (1985).Google Scholar
  2. [2]
    N. Wiedenhof, Starke21, 63 (1969).Google Scholar
  3. [3]
    E. Akito, Y. Nakájima, M. Horioka, Jpn. Kokai75, 520 (1975).Google Scholar
  4. [4]
    H. Schlenk, D. M. Sand, J. Am. Chem. Soc.83, 2312 (1961).Google Scholar
  5. [5]
    J. Szejtli, E. Bolla-Pusztai, P. Szabo, T. Ferenczy, Pharmacie35, 779 (1980).Google Scholar
  6. [6]
    J. Kiji, H. Konishi, T. Okano, T. Terashima, K. Motomura, Angew. Makromol. Chem.199, 207 (1992).Google Scholar
  7. [7]
    M. R. Eftink, M. L. Andy, K. Bystrom, H. D. Perlmutter, D. S. Kristol, J. Am. Chem. Soc.111, 6765 (1989).Google Scholar
  8. [8]
    W. C. Cromwell, K. Bystrom, M. R. Eftink, J. Phys. Chem.89, 326 (1985).Google Scholar
  9. [9]
    R. Breslow, M. F. Czarniecki, J. Emert, H. Hamaguchi, J. Am. Chem. Soc.102, 762 (1980).Google Scholar
  10. [10]
    R. Kuhn, R. Frei, M. Christen, Anal. Biochem.218, 131 (1994).Google Scholar
  11. [11]
    N. H. H. Heegaard, F. A. Robey, Am. Lab.28T (1991).Google Scholar
  12. [12]
    Y.-H. Chu, L. Z. Avila, H. A. Biebuyck, G. M. Whitesides, J. Med. Chem.35, 2915 (1992).Google Scholar
  13. [13]
    F. A. Gomez, J. K. Chen, A. Tanaka, S. L. Schreiber, G. M. Whitesides, J. Org. Chem.59, 2885 (1994).Google Scholar
  14. [14]
    N. H. H. Heegaard, F. A. Robey, J. Lig. Chromatogr.16, 1923 (1993).Google Scholar
  15. [15]
    F. A. Gomez, L. Z. Avila, Y.-H. Chu, G. M. Whitesides, Anal. Chem.66, 1785 (1994).Google Scholar
  16. [16]
    S. Honda, A. Taga, K. Suzuki, S. Suzuki, K. Kakehi, J. Chromatogr.597, 377 (1992).Google Scholar
  17. [17]
    F. A. Gomez, J. N. Mirkovich, V. M. Dominguez, K. W. Liu, D. M. Macias, J. Chromatogr.727, 291 (1996).Google Scholar
  18. [18]
    S. Handwerger, M. Pucci, K. J. Volk, J. Liu, M. S. Lee, J. Bacteriol.176, 260 (1994).Google Scholar
  19. [19]
    N. H. H. Heegaard, F. A. Robey, Anal. Chem.64, 2479 (1993).Google Scholar
  20. [20]
    S. A. C. Wren, R. C. Rowe, J. Chromatogr.603, 235 (1992).Google Scholar
  21. [21]
    M. Mammen, F. A. Gomez, G. M. Whitesides, Anal. Chem.67, 3526 (1995).Google Scholar
  22. [22]
    K. Takeo, in “Advances in Electrophoresis”, A. Chrambach, M. J. Dunn, B. J. Radola, eds. VCH Publishers, New York, 1987, v. 1, p. 229.Google Scholar
  23. [23]
    Y.-H. Lee, T.-I. Lin, Electrophoresis17, 333 (1996).Google Scholar
  24. [24]
    W. C. Cromwell, K. Bystrom, M. R. Eftink, J. Phys. Chem.89, 326 (1985).Google Scholar
  25. [25]
    L. A. Godinez, S., Patel, C. M. Criss, A. E. Kaifer, J. Phys. Chem.99, 17449 (1995).Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1996

Authors and Affiliations

  • E. -S. Kwak
    • 1
  • F. A. Gomez
    • 1
  1. 1.Department of Chemistry and BiochemistryCalifornia State University, Los AngelesLos AngelesUSA

Personalised recommendations