Advertisement

Chromatographia

, Volume 43, Issue 3–4, pp 215–219 | Cite as

Analysis of terpenoic composition of conifer needle oils by steam distillation/extraction, gas chromatography and gas chromatography-mass spectrometry

  • A. Orav
  • T. Kailas
  • M. Liiv
Short Communications

Summary

The essential oils of Estonian spruce and pine needles have been analysed by a combination of steam distillation/extraction, GC and GC-MS. According to their monoterpene composition Estonian pines belong to a high carene chemotype with monoterpenes representing up to 85% of total oil. Estonian spruce needle oil contains up to 70% of oxygenated terpenes and more limonene and 1,8-cineole than the same spruce species [Picea abies (L.) Karst.] from other localities.

A total of 60 components were identified. Coefficients of variation describe the range of component contents in individual trees within the population.

Key Words

Pinus silvestris Picea abies Needle oils SDE, HRGC, GC-MS Terpenoic composition Retention indices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Juvonen, Diss. Acta Bot. Fenn.71, 1 (1966).Google Scholar
  2. [2]
    R. Hiltunen, Ann. Acad. Sci. Fenn. Ser. A208, 1 (1976).Google Scholar
  3. [3]
    A. N. Semenov, Ed., Terpenoidy hvoinoeh rastenii (Terpenoids of conifer plants), Novosibirsk:, 1987.Google Scholar
  4. [4]
    I. I. Bardoeshev, B. G. Udarov, Dok. Acad. Nauk BSSR22, 947 (1978).Google Scholar
  5. [5]
    I. I. Bardoeshev, B. G. Udarov, A. N. Bulkakov, I. G. Zimina, Dok. Akad. Nauk BSSR23, 536 (1979).Google Scholar
  6. [6]
    Y. A. Poltavtsenko, T. N. Tkatsh, V. S. Tkatsh, G. A. Rudakov, Nauch. Dokl. Vyssh. Shkol., Biol. Nauki10, 71 (1968).Google Scholar
  7. [7]
    V. U. Maksimov, R. I. Deryuzkin, R. D. Kolesnikova, A. M. Davudov, Izv. Vyssh. Utchebn. Zaved., Lesn. Zh.6, 83 (1981).Google Scholar
  8. [8]
    P. G. Udarov, E. N. Manukov, Vesti Akad. Nauk. BSSR, ser. Biol. Nauk.6, 29 (1984).Google Scholar
  9. [9]
    R. Yazdani, J.-E. Nilsson, Scand. J. For. Res.1, 85 (1986).Google Scholar
  10. [10]
    J. A. Corkill, JHRC & CC11, 211 (1988).Google Scholar
  11. [11]
    J.-C. Chalchat, R.-P. Carry, A. Michet, A. Remery, Phytochemistry24, 2443 (1985).Google Scholar
  12. [12]
    V. I. Rostshin, R. A. Baranova, V. A. Solovjev, Himija prirodn. soed.2, 168 (1986).Google Scholar
  13. [13]
    G. Bocherini, M. Michelozzi, JHRC 16, 10, 619 (1993).Google Scholar
  14. [14]
    A.-K. Borg-Karlson, M. Lindstrom, T. Norin, M. Persson, Acta Chimica Scand.47, 138 (1993).Google Scholar
  15. [15]
    M. Lindstrom, T. Norin, J. Roeraade, J. Chromatogr.513, 315, (1990).Google Scholar
  16. [16]
    A. Orav, K. Kuningas, T. Kailas, J. Chromatogr. A,697 495 (1995).Google Scholar
  17. [17]
    P. Henning, A. Steinborn, W. Engewald, Chromatographia38, 689 (1994).Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1996

Authors and Affiliations

  • A. Orav
    • 1
  • T. Kailas
    • 1
  • M. Liiv
    • 1
  1. 1.Institute of ChemistryTallinnEstonia

Personalised recommendations