## Conclusion

After struggling with the problem of representing structure in similarity data for over 20 years, I find that a number of challenging problems still remain to be overcome—even in the simplest case of the analysis of a single symmetric matrix of similarity estimates. At the same time, I am more optimistic than ever that efforts directed toward surmounting the remaining difficulties will reap both methodological and substantive benefits. The methodological benefits that I forsee include both an improved efficiency and a deeper understanding of “discovery” methods of data analysis. And the substantive benefits should follow, through the greater leverage that such methods will provide for the study of complex empirical phenomena—perhaps particularly those characteristic of the human mind.

## Keywords

Data Analysis Public Policy Statistical Theory Deep Understanding Similarity Data## Preview

Unable to display preview. Download preview PDF.

## References

- Abelson, R. P., and Tukey, J. W. Efficient conversion of nonmetric information into metric information.
*Proceedings of the American Statistical Association Meetings*, Social Statistics Section, 1959, 226–230.Google Scholar - Anderson, J. R., and Bower, G. H. Human associative memory. Washington, D. C.: V. H. Winston & Sons, 1973.Google Scholar
- Arabie, P. Concerning Monte Carlo evaluations of nonmetric multidimensional scaling algorithms.
*Psychometrika*, 1973,**38**, 607–608.Google Scholar - Arabie, P. and Boorman, S. A. Multidimensional scaling of measures of distance between partitions.
*Journal of Mathematical Psychology*, 1973,**10**, 148–203.Google Scholar - Arabie, P. and Shepard, R. N. Representation of similarities as additive combinations of discrete overlapping properties. Presented at the Mathematical Psychology Meeting in Montreal, August, 1973.Google Scholar
- Arnold, J. B. A multidimensional scaling study of semantic distance.
*Journal of Experimental Psychology Monograph*, 1971,**90**, 349–372.Google Scholar - Attneave, F. Dimensions of similarity.
*American Journal of Psychology*, 1950,**63**, 516–556.Google Scholar - Beals, R., Krantz, D. H., and Tversky, A. Foundations of multidimensional scaling.
*Psychological Review*, 1968,**75**, 127–142.Google Scholar - Bennett, R. S. The intrinsic dimensionality of signal collections. Doctoral dissertation, The Johns Hopkins University, 1965. University Microfilms, Inc., Ann Arbor, Michigan.Google Scholar
- Bennett, R. S. The intrinsic dimensionality of signal collections.
*IEEE Transactions on Information Theory*, 1969, Vol. IT-15, No. 5, 517–525.Google Scholar - Blank, A. A. Axiomatics of binocular vision: The foundations of metric geometry in relation to space perception.
*Journal of the Optical Society of America*, 1958,**48**, 328–334.Google Scholar - Blank, A. A. The Luneburg theory of binocular space perception. In S. Koch (Ed.),
*Psychology: A study of a science*. New York: McGraw-Hill, 1959. Pp. 395–426.Google Scholar - Blumenthal, L. M.
*Theory and applications of distance geometry*. Oxford: Clarendon Press, 1953.Google Scholar - Boyd, J. P. Information distance for discrete structures. In R. N. Shepard, A. K. Romney, & S. B. Nerlove (Eds.),
*Multidimensional scaling: Theory and applications in the behavioral sciences*, Vol. I. New York: Seminar Press, 1972. Pp. 213–223.Google Scholar - Busemann, H.
*The geometry of geodesics*. New York: Academic Press, 1955.Google Scholar - Carroll, J. D. Individual differences and multidimensional scaling. In R. N. Shepard, A. K. Romney, & S. B. Nerlove (Eds.),
*Multidimensional scaling: Theory and applications in the behavioral sciences*, Vol. I. New York: Seminar Press, 1972. (a) Pp. 105–155.Google Scholar - Carroll, J. D. Algorithms for rotation and interpretation of dimensions and for configuration matching. Bell Telephone Laboratories, 1972. (b) (Multilithed handout prepared for the workshop on multidimensional scaling, held at the University of Pennsylvania in June, 1972.)Google Scholar
- Carroll, J. D., and Chang, J.-J. Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition.
*Psychometrika*, 1970,**35**, 283–319.Google Scholar - Chang, J.-J., and Shepard, R. N. Exponential fitting in the proximity analysis of confusion matrices. Presented at the annual meeting of the Eastern Psychological Association, New York, April 14, 1966.Google Scholar
- Clark, H. H. Linguistic processes in deductive reasoning.
*Psychological Review*, 1969,**76**, 387–404.Google Scholar - Clark, H. H. Word associations and linguistic theory. In J. Lyons (Ed.),
*New horizons in linguistics*. Baltimore, Maryland: Penguin Books, 1970. Pp. 271–286.Google Scholar - Coombs, C.
*A theory of data*. New York: Wiley, 1964.Google Scholar - Cross, D. V. Metric properties of multidimensional stimulus generalization. In D. I. Mostofsky (Ed.),
*Stimulus generalization*. Stanford, Calif.: Stanford University Press, 1965. Pp. 72–93.Google Scholar - Cunningham, J. P. On finding an optimal tree realization of a proximity matrix. Presented at the mathematical psychology meeting, Ann Arbor, Michigan, August 29, 1974.Google Scholar
- Cunningham, J. P., and Shepard, R. N. Monotone mapping of similarities into a general metric space.
*Journal of Mathematical Psychology*, 1974,**11**, (in press).Google Scholar - Degerman, R. L. Multidimensional analysis of complex structure: Mixtures of class and quantitative variation.
*Psychometrika*, 1970,**35**, 475–491.Google Scholar - Fillenbaum, S., and Rapoport, A.
*Structures in the subjective lexicon*, New York: Academic Press, 1971.Google Scholar - Foley, J. M. The size-distance relation and the intrinsic geometry of visual space.
*Vision Research*, 1972,**12**, 323–332.Google Scholar - Greenberg, J. H.
*Language universals*. The Hague: Mouton, 1966.Google Scholar - Guttman, L. A new approach to factor analysis: The radex. In P. F. Lazarsfeld (Ed.),
*Mathematical thinking in the social sciences*. Glencoe, Illinois: Free Press, 1954. Pp. 258–348.Google Scholar - Guttman, L. A generalized simplex for factor analysis.
*Psychometrika*, 1955,**20**, 173–192.Google Scholar - Guttman, N., and Kalish, H. I. Discriminability and stimulus generalization.
*Journal of Experimental Psychology*, 1956,**51**, 79–88.Google Scholar - Halle, M. On the bases of phonology. In J. A. Fodor and J. J. Katz (Eds.),
*The structure of language*. Englewood Cliffs, N. J.: Prentice-Hall, 1964. Pp. 324–333.Google Scholar - Harshman, R. A. Foundations of the parafac procedure: Models and conditions for an explanatory multi-modal factor analysis. Unpublished doctoral dissertation, University of California at Los Angeles, 1970.Google Scholar
- Haviland, S. E., and Clark, E. V. ‘This man's father is my father's son’: A study of the acquisition of English kin terms.
*Journal of Child Language*, 1974,**1**, 23–47.Google Scholar - Helm, C. E. Multidimensional ratio scaling analysis of perceived color relations.
*Journal of the Optical Society of America*, 1964,**54**, 256–262.Google Scholar - Hyman, R., and Well, A. Judgments of similarity and spatial models.
*Perception and Psychophysics*, 1967,**2**, 233–248.Google Scholar - Hyman, R., and Well, A. Perceptual separability and spatial models.
*Perception and Psychophysics*, 1968,**3**, 161–165.Google Scholar - Indow, T. Applications of multidimensional scaling in perception. In E. C. Carterette and M. P. Friedman (Eds.),
*Handbook of perception*, Vol. 2. New York: Academic Press, in press.Google Scholar - Jardine, N., and Sibson, R.
*Mathematical taxonomy*. New York: Wiley, 1971.Google Scholar - Klahr, D. A Monte Carlo investigation of the statistical significance of Kruskal's nonmetric scaling procedure.
*Psychometrika*, 1969,**34**, 319–330.Google Scholar - Koopman, R. F., and Cooper, M. Some problems with Minkowski distance models in multidimensional scaling. Presented at the annual meeting of the Psychometric Society, Stanford University, March 28, 1974.Google Scholar
- Kruskal, J. B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.
*Psychometrika*, 1964,**29**, 1–27. (a)Google Scholar - Kruskal, J. B. Nonmetric multidimensional scaling: A numerical method.
*Psychometrika*, 1964,**29**, 28–42. (b)Google Scholar - Kruskal, J. B. Linear transformation of multivariate data to reveal clustering. In R. N. Shepard, A. K. Romney, & S. B. Nerlove (Eds.),
*Multidimensional scaling: Theory and applications in the behavioral sciences*. Vol I. New York: Seminar Press, 1972. Pp. 179–191.Google Scholar - Kruskal, J. B. Multidimensional scaling and other methods for discovering structure. In A. J. Ralston, H. S. Wilf, and K. Enslein, (Eds.),
*Statistical methods for digital computers*. New York: Wiley, in press.Google Scholar - Levelt, W. J. M., Van de Geer, J. P., and Plomp, R. Triadic comparisons of musical intervals.
*British Journal of Mathematical and Statistical Psychology*, 1966,**19**, 163–179.Google Scholar - Lévi-Strauss, C.
*The savage mind*. Chicago: University of Chicago Press, 1967.Google Scholar - Liberman, A. M., Cooper, F. S., Shankweiler, D. P., and Studdert-Kennedy, M. Perception of the speech code.
*Psychological Review*, 1967,**74**, 431–461.Google Scholar - Lingoes, J. C. A general survey of the Guttman-Lingoes nonmetric program series. In R. N. Shepard, A. K. Romney, & S. B. Nerlove (Eds.),
*Multidimensional scaling: Theory and applications in the behavioral sciences*. Vol. I. New York: Seminar Press, 1972.Google Scholar - Luneburg, R. K.
*Mathematical analysis of binocular vision*. Princeton, N. J.: Princeton University Press, 1947.Google Scholar - Luneburg, R. K. The metric of binocular visual space.
*Journal of Optical Society of America*, 1950,**40**, 637–642.Google Scholar - Miller, G., and Nicely, P. E. An analysis of perceptual confusions among some English consonants.
*Journal of the Acoustical Society of America*, 1955,**27**, 338–352.Google Scholar - Osgood, C. E., Suci, G. J., and Tannenbaum, P. H.
*The measurement of meaning*. Urbana, Ill.: University of Illinois Press, 1957.Google Scholar - Peters, R. W. Dimensions of perception of consonants.
*Journal of the Acoustical Society of America*, 1963,**35**, 1985–1989.Google Scholar - Quillian, M. R. Semantic memory. In M. Minsky (Ed.),
*Semantic information processing*. Cambridge, Mass.: M.I.T. Press, 1968.Google Scholar - Rips, L. J., Shoben, E. J., and Smith, E. E. Semantic distance and the verification of semantic relations.
*Journal of Verbal Learning and Verbal Behavior*, 1973,**12**, 1–20.Google Scholar - Romney, A. K., and D'Andrade, R. G. Cognitive aspects of English kinship terms.
*American Anthropologist*, 1964,**66**, 146–170.Google Scholar - Rumelhart, D. E., and Abrahamson, A. A. A model for analogical reasoning.
*Cognitive Psychology*, 1973,**5**, 1–28.Google Scholar - Rumelhart, D. E., Lindsay, P. H., and Norman, D. A. A process model for long-term memory. In E. Tulving and W. Donaldson (Eds.),
*Organization of memory*. New York: Academic Press, 1972.Google Scholar - Rund, H.
*The differential geometry of Finsler space*. Berlin: Springer-Verlag, 1959.Google Scholar - Shepard, R. N. Multidimensional scaling of concepts based upon sequences of restricted associative responses.
*American Psychologist*, 1957,**12**, 440–441. (abstract) (a)Google Scholar - Shepard, R. N. Stimulus and response generalization: A stochastic model relating generalization to distance in psychological space.
*Psychometrika*, 1957,**22**, 325–345. (b)Google Scholar - Shepard, R. N. Stimulus and response generalization: Deduction of the generalization gradient from a trace model.
*Psychological Review*, 1958,**65**, 242–256. (a)Google Scholar - Shepard, R. N. Stimulus and response generalization: Tests of a model relating generalization to distance in psychological space.
*Journal of Experimental Psychology*, 1958,**55**, 509–523. (b)Google Scholar - Shepard, R. N. Similarity of stimuli and metric properties of behavioral data. In H. Gulliksen and S. Messick (Eds.),
*Psychological scaling: Theory and applications*. New York: Wiley, 1960. Pp. 33–43.Google Scholar - Shepard, R. N. The analysis of proximities: Multidimensional scaling with an unknown distance function. I.
*Psychometrika*, 1962,**27**, 125–140. (a)Google Scholar - Shepard, R. N. The analysis of proximities: Multidimensional scaling with an unknown distance function. II.
*Psychometrika*, 1962,**27**, 219–246. (b)Google Scholar - Shepard, R. N. Analysis of proximities as a technique for the study of information processing in man.
*Human Factors*, 1963,**5**, 33–48. (a)Google Scholar - Shepard, R. N. Comments on Professor Underwood's paper “Stimulus selection in verbal learning.” In C. N. Cofer and B. S. Musgrave (Eds.),
*Verbal behavior and learning: Problems and processes*. New York: McGraw-Hill, 1963. Pp. 48–70. (b)Google Scholar - Shepard, R. N. Attention and the metric structure of the stimulus space.
*Journal of Mathematical Psychology*, 1964,**1**, 54–87. (a)Google Scholar - Shepard, R. N. Polynomial fitting in the analysis of proximities.
*Proceedings of the XVIIth international congress of psychology*. Amsterdam: North-Holland Publisher, 1964, 345–346. (abstract) (b)Google Scholar - Shepard, R. N. Approximation to uniform gradients of generalization by monotone transformations of scale. In D. I. Mostofsky (Ed.),
*Stimulus Generalization*. Stanford, Calif.: Stanford University Press, 1965. Pp. 94–110.Google Scholar - Shepard, R. N. Computer explorations of psychological space. Invited research address presented at the annual meeting of the American Psychological Association, New York, September 3, 1966. (a)Google Scholar
- Shepard, R. N. Metric structures in ordinal data.
*Journal of Mathematical Psychology*, 1966,**3**, 287–315. (b)Google Scholar - Shepard, R. N. Continuity versus the triangle inequality as a central principle for the spatial analysis of similarity data. Presented in a symposium on alternative models for the geometric representation of psychological data, at the mathematical psychology meetings, Stanford University, August 28, 1968.Google Scholar
- Shepard, R. N. Introduction to Volume I. In R. N. Shepard, A. K. Romney, & S. B. Nerlove (Eds.),
*Multidimensional scaling: Theory and applications in the behavioral sciences*, Vol. I. New York: Seminar Press, 1972. Pp. 1–20. (a)Google Scholar - Shepard, R. N. A taxonomy of some principal types of data and of multidimensional methods for their analysis. In R. N. Shepard, A. K. Romney, & S. B. Nerlove (Eds.),
*Multidimensional scaling: Theory and applications in the behavioral sciences*, Vol. I. New York: Seminar Press, 1972. Pp. 21–47. (b)Google Scholar - Shepard, R. N. Psychological representation of speech sounds. In E. E. David & P. B. Denes (Eds.),
*Human communication: A unified view*. New York: McGraw-Hill, 1972. Pp. 67–113. (c)Google Scholar - Shepard, R. N., and Carroll, J. D. Parametric representation of nonlinear data structures. In P. R. Krishnaiah (Ed.),
*Multivariate analysis: Proceedings of an international symposium*. New York: Academic Press, 1966. Pp. 561–592.Google Scholar - Shepard, R. N., and Cermak, G. W. Perceptual-cognitive explorations of a toroidal set of free-form stimuli.
*Cognitive Psychology*, 1973,**4**, 351–377.Google Scholar - Shepard, R. N., Hovland, C. I. and Jenkins, H. M. Learning and memorization of classifications.
*Psychological Monographs*, 1961,**75**, (13, whole no. 517).Google Scholar - Shepard, R. N., Kilpatric, D. W., and Cunningham, J. P. The internal representation of numbers.
*Cognitive Psychology*, in press.Google Scholar - Silberstein, L. Investigations of the intrinsic properties of the color domain.
*Journal of the Optical Society of America*, 1938,**28**, 63–85.Google Scholar - Silberstein, L., and MacAdam, D. L. The distribution of color matchings around a color center.
*Journal of the Optical Society of America*, 1945,**35**, 32–39.Google Scholar - Sokal, R. R., and Sneath, P. H. A.
*Principles of numerical taxonomy*. San Francisco: W. H. Freeman, 1963.Google Scholar - Stenson, H. H., and Knoll, R. L. Goodness of fit for random rankings in Kruskal's nonmetric scaling procedure.
*Psychological Bulletin*, 1969,**71**, 122–126.Google Scholar - Thomas, H. Spatial models and multidimensional scaling of random shapes.
*American Journal of Psychology*, 1968,**81**, 551–558.Google Scholar - Torgerson, W. S. Multidimensional scaling: I. theory and method.
*Psychometrika*, 1952,**17**, 401–419.Google Scholar - Torgerson, W. S.
*Theory and methods of scaling*. New York: Wiley, 1958.Google Scholar - Torgerson, W. S. Multidimensional scaling of similarity.
*Psychometrika*, 1965,**30**, 379–393.Google Scholar - Tucker, L. R. Relations between multidimensional scaling and three-mode factor analysis.
*Psychometrika*, 1972,**37**, 3–27.Google Scholar - Wish, M., and Carroll, J. D. Applications of “INDSCAL” to studies of human perception and judgment. In E. C. Carterette and M. P. Friedman (Eds.),
*Handbook of perception*, Vol. 2. New York: Academic Press, in press.Google Scholar - Young, F. W. Nonmetric multidimensional scaling: Recovery of metric information.
*Psychometrika*, 1970,**35**, 455–473.Google Scholar - Young, F. W., and Torgerson, W. S. TORSCA, A FORTRAN IV program for Shepard-Kruskal multidimensional scaling analysis.
*Behavioral Science*, 1967,**12**, 498.Google Scholar