, Volume 8, Issue 1, pp 69–74 | Cite as

Estimate and mapping of the activity of airborne pollen sources

  • Giovanna Puppi Branzi
  • Anna Letizia Zanotti


This contribution presents a procedure for estimating the distribution of pollen sources and mapping their activity. Particular reference is made to the example of mapping the pollen emissions ofCastanea sativa, in the Reno valley near Bologna (Italy), achieved with numerical techniques and starting from basic maps (vegetation, topographic and pedologic), phenological observations and pollen production data.

Key words

Castanea sativa blooming phenological mapping pollen emission pollen sources pollination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Mandrioli P., Puppi G., Tampieri F., (1977) —Dispersione anemofila di polline in Val Padana. Giorn. Bot. Ital.,111:153–164.Google Scholar
  2. Marcello A., (1935) —Nuovi criteri per le osservazioni fitofenologiche. Nuovo Giorn. Bot. Ital.,42:543–556.Google Scholar
  3. Peeters A.G., Zoller H., (1988) —Long range transport of Castanea sativapollen. Grana.27:203–207.Google Scholar
  4. Puppi G., Zanotti A.L., (1988) — Uso di modelli matematici in cartografia ambientale: due esempi di applicazione. Bollettino A.I.C.,72–74:637–651.Google Scholar
  5. Puppi G., Zanotti A.L., (1989) —Modelli di interpolazione spaziale in cartografia fitosociologica. Arch. Bot. Ital.,65: 166–179.Google Scholar
  6. Puppi Branzi G., Zanotti A.L., (1989) —Methods in phenological mapping. Aerobiologia.5: 44–54.Google Scholar
  7. Tampieri F., Mandrioli P., Puppi G.L., (1977) —Medium range transport of airborne pollen. Agricultural Meteorology,18:9–20.Google Scholar
  8. UNIMAP, (1985) —Interactive mapping system. Uniras. Soborg. Denmark.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Giovanna Puppi Branzi
    • 1
  • Anna Letizia Zanotti
    • 1
  1. 1.Dipartimento di Biologia Ev. Sp.Università di BolognaBolognaItaly

Personalised recommendations