, Volume 42, Issue 9–10, pp 528–538 | Cite as

A comparative study of the metal selective properties of chelating dye impregnated resins for the ion chromatographic separation of trace metals

  • B. Paull
  • P. Jones


High-performance chelation ion chromatography (HPCIC) involving the use of chelating dye impregnated resins has been investigated for its ability to preconcentrate and separate a range of metals in a variety of complex samples. The parameters involved in the production of dye impregnated chelating columns have been identified and investigated. A number of selected chelating dyes have been impregnated into high-performance substrates, producing a range of chelating columns, exhibiting unique retention characteristics, dependent upon the nature of the impregnated chelating ligand. These columns have been classified in terms of retention characteristics, separation efficiency, dye loading and column capacity. A brief application of the above technique to the determination of Al (III) in seawater is illustrated.

Key Words

Column liquid chromatography Chelation ion chromatography Dye impregnated resins Trace metals in seawater 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. Kantipuly, S. Katragadda, A. Chow, H. D. Gesser, Talanta37, 491 (1990).Google Scholar
  2. [2]
    C. Liu, J. Chin. Chem. Soc.,36, 389 (1989).Google Scholar
  3. [3]
    K. H. Faltynski, J. R. Jezorek, Chromatographia22, 5 (1986).Google Scholar
  4. [4]
    G. Toei, Fresenius, Z. Anal. Chem.331, 735 (1988).Google Scholar
  5. [5]
    G. Bonn, S. Reiffenstuhl, P. Jandik, J. Chromatogr.499, 669 (1990).Google Scholar
  6. [6]
    P. M. M. Jonas, D. J. Eve, J. R. Parish, Talanta36, 1021 (1989).Google Scholar
  7. [7]
    E. M. Moyers, J. S. Fritz, Anal. Chem.49, 418 (1977).Google Scholar
  8. [8]
    K. T. Denbleyker, J. K. Arbogast, T. R. Sweet, Chromatographia8, 449 (1983).Google Scholar
  9. [9]
    R. J. Phillips, J. S. Fritz, Anal. Chim. Acta,121, 225 (1980).Google Scholar
  10. [10]
    N. Simonzadeh, A. A. Schilt, Talanta35, 187 (1988).Google Scholar
  11. [11]
    R. Raja, Am. Lab.14, 35 (1982).Google Scholar
  12. [12]
    R. Kocjan, Analyst117, 741 (1992).Google Scholar
  13. [13]
    N. Ryan, J. D. Glennon, D. Muller, Anal. Chim. Acta283, 344 (1993).Google Scholar
  14. [14]
    A. M. Naghmush, M. Trojanowicz, E. Olbrych-Sleszynska, J. Anal. At. Spectrom.7, 323 (1992).Google Scholar
  15. [15]
    H. W. Handley, P. Jones, L. Ebdon, N. W. Barnett, Anal. Proc.28, 37 (1991).Google Scholar
  16. [16]
    P. Jones, O. J. Challenger, S. J. Hill, “Ion exchange processes: Advances and applications”, RSC publication, London, 1993, p. 279.Google Scholar
  17. [17]
    B. Paull, M. Foulkes, P. Jones, Anal. Proc.31, 209 (1994).Google Scholar
  18. [18]
    B. Paull, M. Foulkes, P. Jones, Analyst119, 937 (1994).Google Scholar
  19. [19]
    P. Jones, M. Foulkes, B. Paull, J. Chromatogr.673, 173 (1994).Google Scholar
  20. [20]
    O. J. Challenger, S. J. Hill, P. Jones, J. Chromatogr.639, 197 (1993).Google Scholar
  21. [21]
    M. D. Arguello, J. S. Fritz, Anal. Chem.49, 1595 (1977).Google Scholar
  22. [22]
    L. L. Lloyd, J. Chromatogr.544, 201 (1991).Google Scholar
  23. [23]
    Dionex application note 69, 1991.Google Scholar
  24. [24]
    P. Jones, G. Schwedt, J. Chroamtogr.482, 325 (1989).Google Scholar
  25. [25]
    P. Jones, L. Ebdon, T. Williams, Analyst113, 641 (1988).Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1996

Authors and Affiliations

  • B. Paull
    • 1
  • P. Jones
    • 2
  1. 1.Department of ChemistryUniversity of TasmaniaHobartAustralia
  2. 2.Department of Environmental SciencesUniversity of PlymouthPlymouthUK

Personalised recommendations