, Volume 69, Issue 4, pp 513–545 | Cite as

Geometric representation of association between categories

  • Willem J. HeiserEmail author
2004 Presidential Address


Categories can be counted, rated, or ranked, but they cannot be measured. Likewise, persons or individuals can be counted, rated, or ranked, but they cannot be measured either. Nevertheless, psychology has realized early on that it can take an indirect road to measurement: What can be measured is the strength of association between categories in samples or populations, and what can be quantitatively compared are counts, ratings, or rankings made under different circumstances, or originating from different persons. The strong demand for quantitative analysis of categorical data has thus created a variety of statistical methods, with substantial contributions from psychometrics and sociometrics. What is the common basis of these methods dealing with categories? The basic element they share is that the sample space has a special geometry, in which categories (or persons) are point masses forming a simplex, while distributions of counts or profiles of ratings are centers of gravity, which are also point masses. Rankings form a discrete subset in the interior of the simplex, known as the permutation polytope, and paired comparisons form another subset on the edges of the simplex. Distances between point masses form the basic tool of analysis. The paper gives some history of major concepts, which naturally leads to a new concept: the shadow point. It is then shown how loglinear models, Luce and Rasch models, unfolding models, correspondence analysis and homogeneity analysis, forced classification and classification trees, as well as other models and methods, fit into this particular geometrical framework.

Key words

Categorical data simplex triangular plot paired comparisons rank orders permutation polytope center of gravity BTL model Rasch model inertia association model variation multidimensional unfolding biplot multinomial response model loglinear model forced classification classification tree 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agresti, A. (1990).Categorical Data Analysis. New York: Wiley.Google Scholar
  2. Aitchison, J., & Greenacre, M. (2002). Biplots of compositional data.Applied Statistics, 51, 375–392.Google Scholar
  3. Andrich, D. (1988). The application of an unfolding model of the PIRT type to the measurement of attitude.Applied Psychological Measurement, 12, 33–51.Google Scholar
  4. Andrich, D. (1995). Hyperbolic cosine latent trait models for unfolding direct responses and pairwise preferences.Applied Psychological Measurement, 19, 269–290.Google Scholar
  5. Andrich, D. (1996). A hyperbolic cosine latent trait model for unfolding polytomous responses: Reconciling Thurstone and Likert methodologies.British Journal of Mathematical and Statistical Psychology, 49, 347–365.Google Scholar
  6. Anglin, M.D., McGlothlin, W.H., & Speckart, G. (1981). The effect of parole on methadone-patient behavior.American Journal of Drug and Alcohol Abuse, 8, 153–170.PubMedGoogle Scholar
  7. Bakhuis Roozeboom, H.W. (1894). Grafische Darstellung der heterogenen Systeme aus ein bis vier Stoffen, mit Einschluss der Chemischen Umsetzung [Graphical Representation of Heterogeneous Systems in One to Four Substances, Including their Chemical Conversion].Zeitschrift für Physikalische Chemie, 15, 145–158.Google Scholar
  8. Bartholomew, D.J. (1980). Factor analysis for categorical data.Journal of the Royal Statistical Society, Series B,42, 293–321.Google Scholar
  9. Benzécri, J.-P. (with 33 coauthors) (1973).L'analyse des Données, Tome II: L'analyse des Correspondances [Data Analysis, Part II: Correspondence Analysis]. Paris: Dunod.Google Scholar
  10. Benzécri, J.-P. (1992).Correspondence Analysis Handbook. New York: Marcel Dekker.Google Scholar
  11. Blasius, J., & Greenacre, M.J. (1998).Vizualization of Categorical Data. New York: Academic Press.Google Scholar
  12. Böckenholt, U. (1993). Applications of Thurstonian models to ranking data. In M. Fligner & J. Verducci (Eds.),Probability Models and Statistical Analyses for Ranking Data (pp. 157–172). New York: Springer Verlag.Google Scholar
  13. Böckenholt, U. (2002). A Thurstonian analysis of preference change.Journal of Mathematical Psychology, 46, 300–314.Google Scholar
  14. Boring, E.G. (1942).Sensation and Perception in the History of Experimental Psychology. New York: Appleton-Century-Crofts.Google Scholar
  15. Bradley, R.A., & Terry, M.E. (1952). Rank analysis of incomplete block designs: I. The method of paired comparisons.Biometrika, 39, 324–345.Google Scholar
  16. Breiman, L., Friedman, J.H., Olshen, R.A., & Stone, C.J. (1984).Classification and Regression Trees. Belmont, CA: Wadsworth.Google Scholar
  17. Busing, F.M.T.A., Groenen, P.J.F., & Heiser, W.J. (2005). Avoiding degeneracy in multidimensional unfolding by penalizing on the coefficient of variation.Psychometrika,70, in press.Google Scholar
  18. Carroll, J.D. (1972). Individual differences and multidimensional scaling. In R.N. Shepard, A.K. Romney, & S.B. Nerlove (Eds.),Multidimensional Scaling: Theory and Applications in the Behavioral Sciences, Vol. I. Theory (pp. 105–155). New York: Wiley.Google Scholar
  19. Cliff, N., Collins, L.M., Zatkin, J.L., Gallipeau, D., & McCormick, D.J. (1988). An ordinal scaling method for questionnaire and other ordinal data.Applied Psychological Measurement, 12, 83–97.Google Scholar
  20. Cohen, A., & Mallows, C.L. (1980).Analysis of ranking data. Technical Report, Bell Telephone Laboratories, Murray Hill, New Jersey.Google Scholar
  21. Cohen, A., & Mallows, C.L. (1983). Assessing goodness of fit of ranking models to data.The Statistician, 32, 361–373.Google Scholar
  22. Coombs, C.H. (1950). Psychological scaling without a unit of measurement.Psychological Review, 57, 145–158.PubMedGoogle Scholar
  23. Coombs, C.H. (1964).A Theory of Data. New York: Wiley.Google Scholar
  24. Cox, D.R. (1970).The Analysis of Binary Data. London: Methuen.Google Scholar
  25. Coxeter, H.S.M. (1973).Regular Polytopes. New York: Dover.Google Scholar
  26. Critchlow, D.E. (1985).Metric Methods for Analyzing Partially Ranked Data. New York: Springer Verlag.Google Scholar
  27. Daniels, H.E. (1950). Rank correlation and population models.Journal of the Royal Statistical Society, Series B,12, 171–181.Google Scholar
  28. Delbeke, L. (1968).Construction of preference spaces: An investigation into the applicability of multidimensional scaling models. Leuven: Leuvense Universitaire Uitgaven.Google Scholar
  29. De Rooij, M., & Heiser, W.J. (2005). Graphical representations and odds ratios in a distance-association model for the analysis of cross-classified data.Psychometrika,70, in press.Google Scholar
  30. DeSarbo, W.S., & Cho, J. (1989). A stochastic multidimensional scaling vector threshold model for the spatial representation of “pick any/N” data.Psychometrika, 54, 105–129.Google Scholar
  31. DeSarbo, W.S., & Hoffman, D.L. (1986). Simple and weighted unfolding threshold models for the spatial representation of binary choice data.Applied Psychological Measurement, 10, 247–264.Google Scholar
  32. DeSarbo, W.S., & Rao, V.R. (1984). GENFOLD2: A set of models and algorithms for the GENeral unfolding analysis of preference/dominance data.Journal of Classification, 1, 147–186.CrossRefGoogle Scholar
  33. De Soete, G., & Heiser, W.J. (1993). A latent class unfolding model for analyzing single stimulus preference ratings.Psychometrika, 58, 545–565.Google Scholar
  34. Diaconis, P. (1982).Group Theory in Statistics. Harvard University Lecture Notes.Google Scholar
  35. Diaconis, P. (1988).Group Representations in Probability and Statistics. Hayward, CA: Institute of Mathematical Statistics.Google Scholar
  36. Dijksterhuis, E.J. (1987).Archimedes. Princeton, NJ: Princeton University Press.Google Scholar
  37. Embretson, S.E. (1984). A general multicomponent latent trait model for response processes.Psychometrika, 49, 175–186.Google Scholar
  38. Escher, B.G. (1934).De Methodes der Grafische Voorstelling [Methods of Graphical Representation]. Amsterdam: Maatschappij voor Goede en Goedkope Lectuur.Google Scholar
  39. Feigin, P.D., & Cohen, A. (1978). On a model for concordance between judges.Journal of the Royal Statistical Society, Series B,40, 203–213.Google Scholar
  40. Fienberg, S.E. (1968). The geometry of anr ×c contingency table.The Annals of Mathematical Statistics, 39, 1186–1190.Google Scholar
  41. Fienberg, S.E. (1970). An iterative procedure for estimation in contingency tables.The Annals of Mathematical Statistics, 41, 907–917.Google Scholar
  42. Fienberg, S.E., & Gilbert, J.P. (1970). The geometry of a two by two contingency table.Journal of the American Statistical Association, 65, 694–701.Google Scholar
  43. Fienberg, S.E., & Holland, P.W. (1973). Simultaneous estimation of multinomial cell probabilities.Journal of the American Statistical Association, 68, 683–691.Google Scholar
  44. Fienberg, S.E., & Larntz, K. (1976). Loglinear representation for paired and multiple comparison models.Biometrika, 63, 245–254.Google Scholar
  45. Fischer, G.H. (1973). Linear logistic test model as an instrument in educational research.Acta Psychologica, 37, 359–374.CrossRefGoogle Scholar
  46. Fligner, M.A., & Verducci, J.S. (1986). Distance based ranking models.Journal of the Royal Statistical Society, Series B,48, 359–369.Google Scholar
  47. Fligner, M.A., & Verducci, J.S. (1988). Multistage ranking models.Journal of the American Statistical Association, 83, 892–901.Google Scholar
  48. Fligner, M.A., & Verducci, J.S. (Eds.) (1993).Probability Models and Statistical Analyses for Ranking Data. New York; Springer Verlag.Google Scholar
  49. Galton, F. (1888). Co-relations and their measurement, chiefly from anthropometric data.Proceedings of the Royal Society of London, 45, 135–145.Google Scholar
  50. Gibbs, J.W. (1877). On the equilibrium of heterogeneous substances.Transactions of the Connecticut Academy, III, 108–248.Google Scholar
  51. Gifi, A. (1990).Nonlinear Multivariate Analysis. New York: Wiley.Google Scholar
  52. Goodman, L.A. (1985). The analysis of cross-classified data having ordered and/or unordered categories: Association models, correlation models, and asymmetry models for contingency tables with or without missing entries.Annals of Statistics, 13, 10–69.Google Scholar
  53. Greenacre, M.J. (1988). Clustering the rows and columns of a contingency table.Journal of Classification, 5, 39–51.CrossRefGoogle Scholar
  54. Greenacre, M.J. (1993). Biplots in correspondence analysis.Journal of Applied Statistics, 20, 251–269.Google Scholar
  55. Hastie, T., Tibshirani, R., & Friedman, J.H. (2001).The Elements of Statistical Learning. New York: Springer Verlag.Google Scholar
  56. Heath, T.L. (1925). Introduction. In: Euclid,The Thirteen Books of the Elements. New York: Dover (unabridged republication of the second edition, 1956).Google Scholar
  57. Heiser, W.J. (1981).Unfolding Analysis of Proximity Data. Unpublished Ph.D. Thesis, Leiden University.Google Scholar
  58. Heiser, W.J. (1989). Order invariant unfolding analysis under smoothness restrictions. In G. De Soete, H. Feger, & K.C. Klauer (Eds.),New Developments in Psychological Choice Modeling (pp. 3–31). Amsterdam: North-Holland.Google Scholar
  59. Heiser, W.J. (2001). Correspondence analysis. In N.J. Smelser & P.B. Baltes (Eds.),International Encyclopedia of the Social and Behavioral Sciences (pp. 2820–2824). Oxford: Pergamon.Google Scholar
  60. Heiser, W.J. (2003a). Trust in relations.Measurement: Interdisciplinary Research and Perspectives, 1, 264–269.Google Scholar
  61. Heiser, W.J. (2003b).Interpretation of Between-Set Distances in Correspondence Analysis. Paper presented at the DI-MACS Workshop on Algorithms for Multidimensional Scaling, II. Tallahassee, Florida, USA, June 11–12, 2003.Google Scholar
  62. Heiser, W.J., & Busing, F.M.T.A. (2004). Multidimensional scaling and unfolding of symmetric and asymmetric proximity relations. In D. Kaplan (Ed.),The SAGE Handbook of Quantitative Methodology for the Social Sciences (pp. 25–48). Thousand Oaks, CA: Sage.Google Scholar
  63. Heiser, W.J., & Meulman, J.J. (1983). Analyzing rectangular tables by joint and constrained MDS.Journal of Econometrics, 22, 139–167.CrossRefGoogle Scholar
  64. Ihm, P., & Van Groenewoud, H. (1975). A multivariate ordering of vegetation data based on Gaussian type gradient response curves.Journal of Ecology, 63, 767–778.Google Scholar
  65. Israëls, A. (1987).Eigenvalue Techniques for Qualitative Data. Leiden: DSWO Press.Google Scholar
  66. Johnson, M., & Junker, B.W. (2003). Using data augmentation and Markov chain Monte Carlo for the estimation of unfolding response models.Journal of Educational and Behavioral Statistics, 28, 195–230.Google Scholar
  67. Kelderman, H., & Rijkes, C.P.M. (1994). Loglinear multidimensional IRT models for polytomously scored items.Psychometrika, 59, 149–176.CrossRefGoogle Scholar
  68. Kendall, M.G. (1948).Rank Correlation Methods (first edition). London: Griffin.Google Scholar
  69. Kim, C., Rangaswamy, A., & DeSarbo, W.S. (1999). A quasi-metric approach to multidimensional unfolding for reducing the occurrence of degenerate solutions.Multivariate Behavioral Research, 34, 134–180.CrossRefGoogle Scholar
  70. Kruskal, J.B., & Carroll, J.D. (1969). Geometric models and badness-of-fit functions. In P.R. Krishnaiah (Ed.),Multivariate Analysis, Vol II (pp. 639–671). New York: Academic Press.Google Scholar
  71. Kruskal, J.B., & Shepard, R.N. (1974). A nonmetric variety of linear factor analysis.Psychometrika, 39, 123–157.CrossRefGoogle Scholar
  72. Lebart, L. (1998). Correspondence analysis, discrimination, and neural networks. In C. Hayashi, N. Ohsumi, K. Yajima, Y. Tanaka, H.-H. Bock, & Y. Baba (Eds.),Data Science, Classification, and Related Methods (pp. 423–430). Tokyo: Springer.Google Scholar
  73. Lee, S.-Y., Poon, W.-Y., & Bentler, P.M. (1992). Structural equation models with continuous and polytomous variables.Psychometrika, 57, 89–105.Google Scholar
  74. Lewis, C. (1986). Test Theory and Psychometrika: The past twenty-five years.Psychometrika, 51, 11–22.Google Scholar
  75. Lovie, A.D. (1995). Who discovered Spearman's rank correlation?British Journal of Mathematical and Statistical Psychology, 48, 255–269.Google Scholar
  76. Luce, R.D. (1959).Individual Choice Behavior: A Theoretical Analysis. New York: Wiley.Google Scholar
  77. Magidson, J., & Vermunt, J.K. (2001). Latent class factor and cluster models, bi-plots, and related graphical displays.Sociological Methodology, 31, 223–274.CrossRefGoogle Scholar
  78. Mallows, C.L. (1957). Non-null ranking models: I.Biometrika, 44, 114–130.Google Scholar
  79. Marden J.I. (1995).Analyzing and Modeling Rank Data. London: Chapman & Hall.Google Scholar
  80. Maxwell, J.C. (1857). Experiments on colour, as perceived by the eye, with remarks on colour-blindness.Transactions of the Royal Society of Edinburgh, 21, 275–298.Google Scholar
  81. Maxwell, J.C. (1860). On the theory of compound colours, and the relations of the colours of the spectrum.Philosophical Transactions of the Royal Society of London, 150, 57–84.Google Scholar
  82. McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior. In P. Zarembka (Ed.),Frontiers in Econometrics, pp. 105–142. New York: Academic Press.Google Scholar
  83. Meulman, J.J., & Heiser, W.J. (1998). Visual display of interaction in multiway contingency tables by use of homogeneity analysis: the 2×2×2×2 case. In J. Blasius & M. Greenacre (Eds.),Visualization of Categorical Data (pp. 277–296). New York: Academic Press.Google Scholar
  84. Meulman, J.J., Van der Kooij, A.J., & Heiser, W.J. (2004). Principal components analysis with nonlinear optimal scaling transformations for ordinal and nominal data. In D. Kaplan (Ed.),The SAGE Handbook of Quantitative Methodology for the Social Sciences (pp. 49–70). Thousand Oaks, CA: Sage.Google Scholar
  85. Michell, J. (1999).Measurement in Psychology: Critical History of a Methodological Concept. Cambridge, UK: Cambridge University Press.Google Scholar
  86. Mirkin, B. (2001). Eleven ways to look at the chi-squared coefficient for contingency tables.The American Statistician, 55, 111–120.CrossRefGoogle Scholar
  87. Mirkin, B., Arabie, P., & Hubert, L.J. (1995). Additive two-mode clustering: The error-variance approach revisited.Journal of Classification, 12, 243–263.Google Scholar
  88. Nishisato, S. (1984). Forced classification: A simple application of a quantification technique.Psychometrika, 49, 25–36.Google Scholar
  89. Nishisato, S. (2004). Dual scaling. In D. Kaplan (Ed.),The SAGE Handbook of Quantitative Methodology for the Social Sciences, pp. 3–24. Thousand Oaks, CA: Sage.Google Scholar
  90. Pearson, K. (1896). Mathematical contributions to the theory of evolution—III: Regression, heredity, and panmixia.Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 187, 253–318.Google Scholar
  91. Pearson, K. (1900).The Grammar of Science (2nd Ed.). London: Adam and Charles Black.Google Scholar
  92. Plackett, R.L. (1975). The analysis of permutations.Applied Statistics, 24, 193–202.Google Scholar
  93. Post, W.J. (1992).Nonparametric Unfolding Models: A Latent Structure Approach. Leiden: DSWO Press.Google Scholar
  94. Rasch, G. (1966). An item analysis which takes individual differences into account.British Journal of Mathematical and Statistical Psychology, 19, 49–57.PubMedGoogle Scholar
  95. Roberts, J.S., Donoghue, J.R., & Laughlin, J.E. (2000). A general item response theory model for unfolding unidimendional polytomous responses.Applied Psychological Measurement, 24, 3–32.Google Scholar
  96. Roberts, J.S., & Laughlin, J.E. (1996). A unidimensional item response model for unfolding responses from a graded disagree-agree response scale.Applied Psychological Measurement, 20, 231–255.Google Scholar
  97. Roskam, E.E.Ch.I. (1968).Metric Analysis of Ordinal Data in Psychology. Voorschoten: VAM Publ.Google Scholar
  98. Ross, J., & Cliff, N. (1964). A generalization of the interpoint distance model.Psychometrika, 29, 167–176.Google Scholar
  99. Schönemann, P.H. (1970). On metric multidimensional unfolding.Psychometrika, 35, 349–366.Google Scholar
  100. Schoute, P.H. (1911). Analytic treatment of the polytopes regularly derived from the regular polytopes.Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam (eerste sectie), 11(3), 1–82 (incl. separate plates with 12 figures and 3 tables).Google Scholar
  101. Slater, P. (1960). The analysis of personal preferences.British Journal of Statistical Psychology, 13, 119–135.Google Scholar
  102. Spearman, C.E. (1904a). The proof and measurement of association between two things.American Journal of Psychology, 15, 72–101.Google Scholar
  103. Spearman, C.E. (1904b). ‘General intelligence’ objectively determined and measured.American Journal of Psychology, 15, 201–293.Google Scholar
  104. Spearman, C.E. (1906). ‘Footrule’ for measuring correlation.British Journal of Psychology, 2, 89–108.Google Scholar
  105. Stein, S. (1999).Archimedes: What Did He Do Besides Cry Eureka? Washington, DC: The Mathematical Association of America.Google Scholar
  106. Stevens, S.S. (1951). Mathematics, measurement and psychophysics. In S.S. Stevens (Ed.),Handbook of Experimental Psychology (pp. 1–49). New York: Wiley.Google Scholar
  107. Takane, Y. (1987). Analysis of contingency tables by ideal point discriminant analysis.Psychometrika, 52, 493–513.Google Scholar
  108. Takane, Y. (1996). An item response model for multidimensional analysis of multiple-choice questionaire data.Behaviormetrika, 23, 153–167.Google Scholar
  109. Takane, Y. (1998). Visualisation in ideal point discriminant analysis. In J. Blasius & M. Greenacre (Eds.),Visualization of Categorical Data (pp. 441–459). New York: Academic Press.Google Scholar
  110. Takane, Y., Yanai, H., & Mayekawa, S. (1991). Relationships among several methods of linearly constrained correspondence analysis.Psychometrika, 56, 667–684.Google Scholar
  111. Ter Braak, C.J.F. (1986). Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis.Ecology, 67, 1167–1179.Google Scholar
  112. Thompson, G.L. (1993). Generalized permutation polytopes and exploratory graphical methods for ranked data.Annals of Statistics, 21, 1401–1430.Google Scholar
  113. Tucker, L.R. (1960). Intra-individual and inter-individual multidimensionality. In H. Gulliksen & S. Messick (Eds.),Psychological Scaling: Theory and Applications (pp. 155–167). New York: Wiley.Google Scholar
  114. Van de Geer, J.P. (1993).Multivariate Analysis of Categorical Data: Theory. Newbury Park, CA: Sage.Google Scholar
  115. Van der Ark, L.A., & Van der Heijden, P.G.M (1998). Graphical display of latent budget analysis and latent class analysis, with special reference to correspondence analysis. In J. Blasius & M. Greenacre (Eds.),Visualization of Categorical Data (pp. 489–508). New York: Academic Press.Google Scholar
  116. Van der Ark, L.A., Van der Heijden, P.G.M., & Sikkel, D. (1999). On the identifiability in the latent budget model.Journal of Classification, 16, 117–137.CrossRefGoogle Scholar
  117. Van Deun, K., Groenen, P.J.F., Heiser, W.J., Busing, F.M.T.A., & Delbeke, L. (2005). Interpreting degenerate solutions in unfolding by use of the vector model and the compensatory distance model.Psychometrika, 70, in press.Google Scholar
  118. Van Deun, K., Heiser, W.J., & Delbeke, L. (2004). Multidimensional unfolding by nonmetric multidimensional scaling of Spearman distances in the extended permutation polytope (submitted ms.).Google Scholar
  119. Van IJzendoorn, M.H., & Kroonenberg, P.M. (1988). Cross-cultural patterns of attachment: A meta-analysis of the strange situation.Child Development, 59, 147–156.Google Scholar
  120. Wickens, T.D. (1989).Multiway Contingency Tables Analysis for the Social Sciences. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  121. Williams, R.H., Zimmerman, D.W., Zumbo, B.D., & Ross, D. (2003). Charles Spearman: British behavioral scientist.Human Nature Review, 3, 114–118.Google Scholar
  122. Wilkinson, L. (1999).The Grammar of Graphics. New York: Springer Verlag.Google Scholar
  123. Young, F.W., Takane, Y., & De Leeuw, J. (1978). The principal components of mixed measurement level multivariate data: An alternating least squares method with optimal scaling features.Psychometrika, 43, 279–281.Google Scholar
  124. Yule, G.U. (1900). On the association of attributes in statistics.Philosophical Transactions of the Royal Society of London (A), 194, 257–319.Google Scholar
  125. Zhang, J. (2004). Binary choice, subset choice, random utility, and ranking: A unified perspective using the permutahedron.Journal of Mathematical Psychology, 48, 107–134.Google Scholar
  126. Ziegler, G.U. (1995).Lectures on Polytopes. New York: Springer Verlag.Google Scholar

Copyright information

© The Psychometric Society 2004

Authors and Affiliations

  1. 1.Department of PsychologyLeiden UniversityLeidenThe Netherlands

Personalised recommendations