Advertisement

Psychometrika

, Volume 27, Issue 3, pp 219–246 | Cite as

The analysis of proximities: Multidimensional scaling with an unknown distance function. II

  • Roger N. Shepard
Article

Abstract

The first in the present series of two papers described a computer program for multidimensional scaling on the basis of essentially nonmetric data. This second paper reports the results of two kinds of test applications of that program. The first application is to artificial data generated by monotonically transforming the interpoint distances in a known spatial configuration. The purpose is to show that the recovery of the original metric configuration does not depend upon the particular transformation used. The second application is to measures of interstimulus similarity and confusability obtained from some actual psychological experiments.

Keywords

Computer Program Public Policy Distance Function Statistical Theory Present Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Abelson, R. P. A technique and a model for multidimensional attitude scaling.Public Opinion Quart., 1954,18, 405–418.Google Scholar
  2. [2]
    Abelson, R. P. and Sermat, V. Multidimensional scaling of facial expressions.J. exp. Psychol, in press.Google Scholar
  3. [3]
    Abelson, R. P. and Tukey, J. W. Efficient conversion of nonmetric information into metric information.Proc. Amer. Statist. Assoc. Meetings, Social Statistics Section, 1959, 226–230.Google Scholar
  4. [4]
    Attneave, F. Dimensions of similarity.Amer. J. Psychol, 1950,63, 516–556.Google Scholar
  5. [5]
    Coombs, C. H. Psychological scaling without a unit of measurement.Psychol. Rev., 1950,57, 145–158.Google Scholar
  6. [6]
    Coombs, C. H. An application of a nonmetric model for multidimensional analysis of similarities.Psychol. Rep., 1958,4, 511–518.Google Scholar
  7. [7]
    Coombs, C. H.Theory of data (mimeographed manuscript for forthcoming book).Google Scholar
  8. [8]
    Coombs, C. H. and Kao, R. C. On a connection between factor analysis and multidimensional unfolding.Psychometrika, 1960,25, 219–231.Google Scholar
  9. [9]
    Deese, J. On the structure of associative meaning.Psychol. Rev., 1961, in press.Google Scholar
  10. [10]
    Ekman, G. Dimensions of color vision.J. Psychol., 1954,38, 467–474.Google Scholar
  11. [11]
    Ekman, G. Dimensions of emotion.Acta Psychologica, 1955,11, 279–288.Google Scholar
  12. [12]
    Engen, T., Levy, N., and Schlosberg, H. A new series of facial expressions.Amer. Psychologist, 1957,12, 264–266.Google Scholar
  13. [13]
    Fagot, R. F. A method for ordered metric scaling by comparison of intervals.Psychometrika, 1959,24, 157–168.Google Scholar
  14. [14]
    Hays, W. L. and Bennett, J. F. Multidimensional unfolding: Determining configurration from complete rank order preference data.Psychometrika, 1961,26, 221–238.Google Scholar
  15. [15]
    Helm, C., Messick, S. J., and Tucker, L. R. Psychophysical models for relating discrimination and magnitude estimation scales.Psychol. Rev. 1961,68, 167–177.Google Scholar
  16. [16]
    Householder, A. S. and Landahl, H. D.Mathematical biophysics of the central nervous system. Bloomington, Indiana: Principia Press, 1945.Google Scholar
  17. [17]
    Indow, T. and Kanazawa, K. Multidimensional mapping of Munsell colors varying in hue, chroma, and value.J. exp. Psychol., 1960,59, 330–336.Google Scholar
  18. [18]
    Indow, T. and Uchizono, T. Multidimensional mapping of Munsell colors varying in hue and chroma.J. exp. Psychol., 1960,59, 321–329.Google Scholar
  19. [19]
    Klingberg, F. L. Studies in measurement of the relations between sovereign states.Psychometrika, 1941,6, 335–352.Google Scholar
  20. [20]
    Landahl, H. D. Neural mechanisms for the concepts of difference and similarity.Bull. math. Biophysics, 1945,7, 83–88.Google Scholar
  21. [21]
    McGuire, W. J. A multiprocess model for paired-associate learning.J. exp. Psychol., 1961,62, 335–347.Google Scholar
  22. [22]
    Messick, S. J. An empirical evaluation of multidimensional successive intervals.Psychometrika, 1956,21, 367–375.Google Scholar
  23. [23]
    Restle, F. A metric and an ordering on sets.Psychometrika, 1959,24, 207–220.Google Scholar
  24. [24]
    Richardson, M. W. Multidimensional psychophysics.Psychol. Bull., 1938,35, 659–660. (Abstract)Google Scholar
  25. [25]
    Shepard, R. N. Stimulus and response generalization: A stochastic model relating generalization to distance in psychological space.Psychometrika, 1957,22, 325–345.Google Scholar
  26. [26]
    Shepard, R. N. Stimulus and response generalization: Tests of a model relating generalization to distance in psychological space.J. exp. Psychol., 1958,55, 509–523.Google Scholar
  27. [27]
    Shepard, R. N. Stimulus and response generalization: Deduction of the generalization gradient from a trace model.Psychol. Rev., 1958,65, 242–256.Google Scholar
  28. [28]
    Shepard, R. N. The analysis of proximities: Multidimensional scaling with an unknown distance function. I.Psychometrika, 1962,27, 125–140.Google Scholar
  29. [29]
    Siegel, S. A method for obtaining an ordered metric scale.Psychometrika, 1956,21, 207–216.Google Scholar
  30. [30]
    Stevens, S. S. Mathematics, measurement, and psychophysics. In S. S. Stevens (Ed.),Handbook of experimental psychology. New York: Wiley, 1951. Pp. 1–49.Google Scholar
  31. [31]
    Thurstone, L. L.Multiple-factor analysis. Chicago: Univ. Chicago Press, 1947.Google Scholar
  32. [32]
    Torgerson, W. S. Multidimensional scaling: I. Theory and method.Psychometrika, 1952,17, 401–419.Google Scholar
  33. [33]
    Torgerson, W. S.Theory and methods of scaling. New York: Wiley, 1958.Google Scholar

Copyright information

© Psychometric Society 1962

Authors and Affiliations

  • Roger N. Shepard
    • 1
  1. 1.Bell Telephone LaboratoriesUSA

Personalised recommendations