, Volume 31, Issue 4, pp 581–603 | Cite as

The centrality index of a graph

  • Gert Sabidussi


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bavelas, A. A mathematical model for group structures.Appl. Anthrop., 1948,7, 16–30.Google Scholar
  2. [2]
    Bavelas, A. Communication patterns in task-oriented groups.J. acoust. Soc. Amer., 1950,22, 725–730.Google Scholar
  3. [3]
    Beauchamp, M. A. An improved index of centrality.Behav. Sci., 1965,10, 161–163.Google Scholar
  4. [4]
    Beatty, J. C. and Miller, R. E. On equi-cardinal restrictions of a graph.Canad. math. Bull., 1964,7, 369–376.Google Scholar
  5. [5]
    Flament, C. Applications of graph theory to group structure. Englewood, Cliffs, N. J.: Prentice-Hall, 1963.Google Scholar
  6. [6]
    Harary, F. Status and contrastatus.Sociometry, 1959,22, 23–43.Google Scholar
  7. [7]
    Harary, F. The group of the composition of two graphs.Duke math. J., 1959,26, 29–34.Google Scholar
  8. [8]
    Harary, F. and Norman, R. Z. The dissimilarity characteristic of Husimi trees.Ann. Math., 1953,58, 134–141.Google Scholar
  9. [9]
    Harary, F., Norman, R. Z., and Cartwright, D.Structural models: An introduction to the theory of directed graphs. New York: Wiley, 1965.Google Scholar
  10. [10]
    Leavitt, H. S. Some effects of certain patterns on group performance.J. abnorm. soc. Psychol., 1951,46, 38–50.Google Scholar
  11. [11]
    Zykov, A. A. On some properties of linear complexes.Mat. Sbornik, N. S., 1949,24 (66), 163–188.Amer. math. Soc. translation No. 79, 1952.Google Scholar

Copyright information

© Psychometric Society 1966

Authors and Affiliations

  • Gert Sabidussi
    • 1
  1. 1.McMaster UniversityUSA

Personalised recommendations