, Volume 31, Issue 4, pp 581–603 | Cite as

The centrality index of a graph

  • Gert Sabidussi


Public Policy Statistical Theory Centrality Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bavelas, A. A mathematical model for group structures.Appl. Anthrop., 1948,7, 16–30.Google Scholar
  2. [2]
    Bavelas, A. Communication patterns in task-oriented groups.J. acoust. Soc. Amer., 1950,22, 725–730.Google Scholar
  3. [3]
    Beauchamp, M. A. An improved index of centrality.Behav. Sci., 1965,10, 161–163.Google Scholar
  4. [4]
    Beatty, J. C. and Miller, R. E. On equi-cardinal restrictions of a graph.Canad. math. Bull., 1964,7, 369–376.Google Scholar
  5. [5]
    Flament, C. Applications of graph theory to group structure. Englewood, Cliffs, N. J.: Prentice-Hall, 1963.Google Scholar
  6. [6]
    Harary, F. Status and contrastatus.Sociometry, 1959,22, 23–43.Google Scholar
  7. [7]
    Harary, F. The group of the composition of two graphs.Duke math. J., 1959,26, 29–34.Google Scholar
  8. [8]
    Harary, F. and Norman, R. Z. The dissimilarity characteristic of Husimi trees.Ann. Math., 1953,58, 134–141.Google Scholar
  9. [9]
    Harary, F., Norman, R. Z., and Cartwright, D.Structural models: An introduction to the theory of directed graphs. New York: Wiley, 1965.Google Scholar
  10. [10]
    Leavitt, H. S. Some effects of certain patterns on group performance.J. abnorm. soc. Psychol., 1951,46, 38–50.Google Scholar
  11. [11]
    Zykov, A. A. On some properties of linear complexes.Mat. Sbornik, N. S., 1949,24 (66), 163–188.Amer. math. Soc. translation No. 79, 1952.Google Scholar

Copyright information

© Psychometric Society 1966

Authors and Affiliations

  • Gert Sabidussi
    • 1
  1. 1.McMaster UniversityUSA

Personalised recommendations