, Volume 25, Issue 1, pp 27–43 | Cite as

Multidimensional unfolding: Determining the dimensionality of ranked preference data

  • Joseph F. Bennett
  • William L. Hays


A model is proposed which treats rankings given by a group of judges as representing regions in an isotonic space of dimensionalityr. Three possible criteria for estimating lower bound dimensionality are discussed: mutual boundary, cardinality, and the occurrence of transposition groups. Problems associated with each criterion are mentioned.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bennett, J. F. Determination of the number of independent parameters of a score matrix from the examination of rank orders.Psychometrika, 1956,21, 383–393.Google Scholar
  2. [2]
    Coombs, C. H. Psychological scaling without a unit of measurement.Psychol. Rev., 1950,57, 145–158.Google Scholar
  3. [3]
    Coombs, C. H. A theory of psychological scaling. Engineering Res. Inst. Bull. No. 34, Ann Arbor: Univ. Michigan Press, 1952.Google Scholar
  4. [4]
    Errara, A.Du coloriage des cartes et de quelques questions d'analysis situs. Paris: Gauthier-Villars, 1921.Google Scholar
  5. [5]
    Guttman, L. A basis for scaling qualitative data.Amer. sociol. Rev., 1944,9, 139–150.Google Scholar
  6. [6]
    Jordan, K.The calculus of finite differences. New York: Chelsea, 1947.Google Scholar
  7. [7]
    Thurstone, L. L. Rank order as a psychophysical method.J. exp. Psychol., 1931,14, 187–201.Google Scholar

Copyright information

© Psychometric Society 1960

Authors and Affiliations

  • Joseph F. Bennett
    • 1
  • William L. Hays
    • 2
  1. 1.Lincoln LaboratoriesMassachusetts Institute of TechnologyUSA
  2. 2.University of MichiganUSA

Personalised recommendations