European Journal of Clinical Pharmacology

, Volume 43, Issue 6, pp 629–633 | Cite as

The effects of the nitric oxide donors molsidomine and SIN-1 on human polymorphonuclear leucocyte functionin vitro andex vivo

  • H. Darius
  • L. Grodzinska
  • J. Meyer


The nitrovasodilator and nitric oxide donor molsidomine and its metabolite SIN-I dilate vascular smooth muscle and inhibit platelet activation by increasing intracellular concentrations of cyclic GMP We have therefore studied the effects of molsidomine and SIN-I on isolated human polymorphonuclear leucocytes (PMN)in vitro andex vivo.

In vitro molsidomine dose-dependently reducedβ-glucuronidase release and the generation of superoxide anions from non-activated and from FMLP- or PAF-stimulated human PMNs. SIN-1 was equally effective in reducing (β-glucuronidase release and totally inhibited oxygen radical generation at a concentration of 580 μmol · l−1.

In a double-blind, placebo-controlled, randomized trial we also studiedβ-glucuronidase release and the generation of superoxide anions from isolated PMNs. Blood was drawn from 12 healthy volunteers before and 3 h after oral molsidomine (16 mg) or placebo. There was no statistically significant difference inβ-glucuronidase release and superoxide anion formation when the PMNs were isolated before or after molsidomine or placebo. This was the case for non-activated, as well as FMLP- or PAF-stimulated PMNs.

Thus, the nitric oxide donors molsidomine and its metabolite SIN-I caused a dose-dependent inhibition of PMN functionsin vitro, but no significant inhibition when the PMNs were isolated after oral molsidomine.

Key words

Molsidomine, SIN-I, Neutrophil leucocytes Aglucuronidase, superoxide anions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Böhme E, Spies C, Grossmann G (1982) Wirksamer Metabolit von Molsidomin und Stimulation der cGMP Bildung durch Sydnonimine. In: Bassenge E, Schmutzler H (eds) Molsidomin — Neue Aspekte zur Therapie der ischämischen Herzerkrankung. Urban & Schwarzenberg, MünchenGoogle Scholar
  2. 2.
    Klocking HP, Hoffmann A, Markwardt F (1987) Release of plasminogen activator by molsidomine and its metabolite SIN-I. Pharmazie 42:354–356Google Scholar
  3. 3.
    Grodzinska L, Hafner G, Darius H (1990) Effect of molsidomine on t-PA and PAI activity in man: a double blind, placebo controlled study. Thromb Haemost 64:485Google Scholar
  4. 4.
    Grodzinska L, Kostka-Trabka E, Bleron K, Slawin ski M. Goszcz A (1992) Molsidomine — NO-donor in patients with atherosclerosis of the lower limbs. J Drug Devel (in press)Google Scholar
  5. 5.
    Darius H, Ahland B, Rücker W, Klaus W, Peskar BA, Schrör K (1984) The effects of molsidomine and its metabolite SIN-1 on coronary vessel tone, platelet aggregation and eicosanoid formation in vitro- inhibition of 12-HPETE biosynthesis. J Cardiovasc Pharmacol 6:115–121Google Scholar
  6. 6.
    Fiedler VB (1982) Reduction of occlusive coronary artery thrombosis and myocardial ischemia by molsidomine in anesthetized dogs. Can J Physiol Pharmacol 60:1104–1109Google Scholar
  7. 7.
    Schröder H, Ney P, Woditsch J, Schrör K (1990) Cyclic GMP mediates SIN-1-induced inhibition of human polymorphonuclear leukocytes. Eur J Pharmacol 182:211–218Google Scholar
  8. 8.
    Ney P, Schröder H, Schrör K (1990) Nitrovasodilator-induced inhibition of LTB4 release from human PMN may be mediated by cyclic GMP. Eicosanoids 3:243–245Google Scholar
  9. 9.
    Romson JL, Hook BG, Kunkel SL, Abrams GD, Schork MA, Lucchesi BR (1983) Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog. Circulation 67:1016–1023Google Scholar
  10. 10.
    Mehta JL, Nichols WW, Mehta P (1988) Neutrophils as potential participants in acute myocardial ischaemia: relevence to perfusion. J Am Coll Cardiol 11:1309–1316Google Scholar
  11. 11.
    Engler RL, Dahlgren MD, Morris D, Petersen M, SchmidSchönbein GW (1986) Role of leukocytes in response to acute myocardial ischemia and reflow in dogs. Am J Physiol 251:H314-H322Google Scholar
  12. 12.
    Darius H, Grodzinska L, Hafner G, Meyer J (1991) Wirkung von Molsidomin auf die fibrinolytische Aktivität: Eine doppelblinde, randomisierte Studie. Ztschr Kardiol 80 [Suppl 5]:47–50Google Scholar
  13. 13.
    Drummer C, Valta-Seufzer U, Karrenbrock B, Heim J-M, Gerzer R (1991) Comparison of anti-platelet properties of molsidomine, isosorbide-5-mononitrate and placebo in healthy volunteers. Eur Heart J 12:541–549Google Scholar
  14. 14.
    Slany J, Silberbauer K, Sinzinger H (1982) Wirkung von Molsidomin auf die Thrombozytenfunktion und das Prostaglandinsystem. In: Bassenge E, Schmutzler H (eds) Molsidomin — Neue Aspekte zur Therapie der ischämischen Herzerkrankung. Urban & Schwarzenberg, MünchenGoogle Scholar
  15. 15.
    Kukovetz WR, Holzmann S (1985) Mechanism of vasodilation by molsidomine. Am Heart J 109:637–640Google Scholar
  16. 16.
    Feelisch M, Noack E (1987) Correlation between nitric oxide formation during degradation of organic nitrates and activation of guanylate cyclase. Eur J Pharmacol 139:10–30Google Scholar
  17. 17.
    Noack E, Feelisch M (1989) Molecular aspects underlying the vasodilator action of molsidomine. J Cardiovasc Pharmacol 14 [Suppl 11]:S1-S5Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • H. Darius
    • 1
  • L. Grodzinska
    • 2
  • J. Meyer
    • 1
  1. 1.II. Medizinische KlinikJohannes Gutenberg UniversitätMainz 1Germany
  2. 2.Department of Pharmacology, Division of Clinical PharmacologyCopernicus Medical AcademyCracowPoland

Personalised recommendations