Journal of Neurocytology

, Volume 25, Issue 1, pp 513–524

Epidermal denervation and its effects on keratinocytes and Langerhans cells

  • Sung-Tsang Hsieh
  • Stephen Choi
  • Whei-Min Lin
  • Yangchyuan Chang
  • Justin C. Mcarthur
  • John W. Griffin
Article

Summary

Skin innervation has been considered to subserve sensory perception only, but several lines of evidence suggest that there are ‘effector’ influences of skin innervation on the immune system and keratotinocytes. In this study, we transected the sciatic nerves of rats and examined the effects of denervation on the epidermis. In normal skin, the epidermis was densely innervated by fine axons that were immunostained with several axonal markers, including neuronal ubiquitin carboxyl terminal hydrolase (protein gene product 9.5). All of the epidermal axons in the regions innervated by sciatic nerve disappeared within 24–48 h after transection of sciatic nerve, and remained absent as long as subsequent reinnervation by regenerating axonal sprouts was prevented. Denervation produced changes in both the keratinocytes and the Langerhans cells, the bone marrowderived antigen-presenting cells of the epidermis. The thickness of epidermis decreased within 7 days. By 48h after transection, the Langerhans cells and their dendritic processes became intensely immunoreactive for protein gene product. Protein gene product 9.5 expression on Langerhans cells remained prominent as long as skin was denervated, but disappeared with reinnervation. By reverse transcription-polymerase chain reaction, we demonstrated the presence of the transcripts for protein gene product 9.5 in epidermis, consistent with the synthesis of the protein by the Langerhans cells. We conclude that epidermal sensory fibres have novel influences on both keratinocytes and Langerhans cells of the epidermis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agger, R., Crowley, M. T. &Witmer-Pack, M. D. (1990) The surface of dendritic cells in the mouse as studied with monoclonal antibodies.International Reviews of Immunology 6, 89–101.Google Scholar
  2. Arthur, R. P. &Shelley, W. B. (1959) The innervation of human epidermis.Journal of Investigative Dermatology 32, 397–411.Google Scholar
  3. Baker, K. W. &Habowsky, J. E. (1983) EDTA separation and ATPase Langerhans cell staining in the mouse epidermis.Journal of Investigative Dermatology 80, 104–7.Google Scholar
  4. Bienenstock, J., MacQueen, G., Sestini, P., Marshall, J. S., Stead, R. H. &Perdue, M. H. (1991) Mast cell/nerve interactions in vitro and in vivo.American Review of Respiratory Disease 143, S55–8.Google Scholar
  5. Bizzi, A., Schaetzle, B., Patton, A., Gambetti, P. &Autilio-Gambetti, L. (1991) Axonal transport of two major components of the ubiquitin system: free ubiquitin and ubiquitin carboxyl-terminal hydrolase PGP 9.5.Brain Research 548, 292–9.Google Scholar
  6. Cauna, N. (1959) The mode of termination of the sensory nerves and its significance.Journal of Comparative Neurology 113, 169–99.Google Scholar
  7. Chomczynski, P. &Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidium thiocynate-phenolchloroform extraction.Analytic Biochemistry 162, 156–9.Google Scholar
  8. Ciechanover, A. (1994) The ubiquitin-proteasome proteolytic pathway.Cell 79, 13–21.Google Scholar
  9. Crawford, T. O., Hsieh, S.-T., Schryer, B. L. &Glass, J. D. (1995) Prolonged axonal survival in transected nerves of C57BL/6/Ola mice is independent of age.Journal of Neurocytology 24, 333–40.Google Scholar
  10. Crowley, C., Spencer, S. D., Nishimura, M. C., Chen, K. S., Pitts-Meek, S., Armanini, M. P., Ling, L. H., McMahon, S. B., Shelton, D., Levinson, A. D. &Phillips, H. S. (1994) Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons.Cell 76, 1001–12.Google Scholar
  11. Dalsgaard, C.-J., Rydh, M. &Haegerstrand, A. (1989) Cutaneous innervation in man visualized with protein gene product 9.5 (PGP 9.5) antibodies.Histochemistry 92, 385–9.Google Scholar
  12. de Fraissinette, A., Dezutter-Dambuyant, C., Schmitt, D. &Thivolet, J. (1990) Ontogeny of Langerhans cells: phenotypic differentiation from the bone marrow to the skin.Developmental and Comparative Immunology 14, 335–46.Google Scholar
  13. Devor, M., Schonfeld, D., Seltzer, Z. &Wall, P. D. (1979) Two modes of cutaneous reinnervation following peripheral nerve injury.Journal of Comparative Neurology 185, 211–20.Google Scholar
  14. Doran, J. F., Jackson, P., Kynoch, P. A. &Thompson, R. J. (1983) Isolation of PGP 9.5, a new human neurone-specific protein detected by high-resolution two-dimensional electrophoresis.Journal of Neurochemistry 40, 1542–7.Google Scholar
  15. English, K. B. (1977) The ultrastructure of cutaneous type I mechanoreceptors (Haarscheiben) in cats following denervation.Journal of Comparative Neurology 172, 137–64.Google Scholar
  16. George, R. &Griffin, J. W. (1994) Delayed macrophage responses and myelin clearance during Wallerian degeneration in the central nervous system: the dorsal radiculotomy model.Experimental Neurology 129, 225–36.Google Scholar
  17. Gibbins, I. L., Furness, J. B., Costa, M., Macintyre, I., Hillyard, C. J. &Girgis, S. (1985) Co-localization of calcitonin generelated peptide-like immunoreactivity with substance P in cutaneous, vascular and visceral sensory neurons of guinea pigs.Neuroscience Letters 57, 125–30.Google Scholar
  18. Gibbins, I. L., Wattchow, D. &Coventry, B. (1987) Two immunohistochemically identified populations of calcitonin gene-related peptide (CGRP)-immunoreactive axons in human skin.Brain Research 414, 143–8.Google Scholar
  19. Goldberg, A. L. (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules.Cell 78, 761–71.Google Scholar
  20. Griffin, J. W. &Hoffman, P. N. (1993), Degeneration and regeneration in the peripheral nervous system. InPeripheral Neuropathy (edited by Dyck, P. J., Thomas, P. K., Griffin, J. W., Low, P. A. & Poduslo, J. F.) pp. 361–76. Philadelphia: W. B. Saunders.Google Scholar
  21. Guth, L. (1957) The effects of glossopharyngeal nerve transection on the circumvallate papilla of the rat.Anatomical Record 128, 715–31.Google Scholar
  22. Guth, L. (1958) Taste buds on the cat's circumvallate papilla after reinnervation by glosso-pharyngeal, vagus, and hypoglossal nerves.Anatomical Record 130, 25–38.Google Scholar
  23. Guth, L. (1963) Histological changes following partial denervation of the circumvallate papilla of the rat.Experimental Neurology 8, 336–49.Google Scholar
  24. Hoffman, P. N., Griffin, J. W. &Price, D. L. (1984) Control of axonal caliber by neurofilament transport.Journal of Cell Biology 99, 705–14.Google Scholar
  25. Hosoi, J., Murphy, G. F., Egan, C. L., Lerner, E. A., Grabbe, S., Asahina, A. &Granstein, R. D. (1993) Regulation of Langerhans cell function by nerves containing calcitonin gene-related peptide.Nature 363, 159–63.Google Scholar
  26. Hsieh, S.-T., Kidd, G. J., Crawford, T. O., Xu, Z., Lin, W.-M., Trapp, B. D., Cleveland, D. W. &Griffin, J. W. (1994a) Regional modulation of neurofilament organization by myelination in normal axons.Journal of Neuroscience.14, 6392–401.Google Scholar
  27. Hsieh, S.-T., Crawford, T. O. &Griffin, J. W. (1994b) Neurofilament distribution and organization in the myelinated axons of the peripheral nervous system.Brain Research 642, 316–26.Google Scholar
  28. Hukkanen, M., Gronblad, M., Rees, R., Kottinen, Y. T., Gibson, S. J., Hietanen, J., Polak, J. M. &Brewerton, D. A. (1991) Regional distribution of mast cells and peptide containing nerves in normal and adjuvant arthritic rat synovium.Journal of Rheumatology 18, 177–83.Google Scholar
  29. Kajimoto, Y., Hashimoto, T., Shirai, Y., Nishino, N., Kuno, T. &Tanaka, C. (1992) cDNA cloning and tissue distribution of a rat ubiquitin carboxyl-terminal hydrolase PGP9.5.Journal of Biochemistry 112, 28–32.Google Scholar
  30. Karanth, S. S., Springall, D. R., Kuhn, D. M., Levene, M. M. &Polak, J. M. (1991) An immunocytochemical study of cutaneous innervation and the distribution of neuropeptides and protein gene product 9.5 in man and commonly employed laboratory animals.American Journal of Anatomy 191, 369–83.Google Scholar
  31. Katz, S. I., Tamaki, K. &Sachs, D. H. (1979) Epidermal Langerhans cells are derived from cells originating in bone marrow.Nature 282, 324–6.Google Scholar
  32. Kennedy, W. R. &Wendelschafer-Crabb, G. (1993) The innervation of human epidermis.Journal of Neurological Science 115, 184–90.Google Scholar
  33. Krueger, G. G., Daynes, R. A. &Emam, M. (1983) Biology of Langerhans cells: selective migration of Langerhans cells into allogeneic and xenogeneic grafts on nude mice.Proceedings of the National Academy of Sciences (USA) 80, 1650–4.Google Scholar
  34. Kruger, L. (1991) The “noceffector” principle and the classification of thin sensory axons.Biomedical Research 12 (Suppl. 2), 211–14.Google Scholar
  35. Kruger, L., Sampogna, S. L., Rodin, B. E., Clague, J., Brecha, N. &Yeh, Y. (1985) Thin-fiber cutaneous innervation and its intraepidermal contribution studied by labeling methods and neurotoxin treatment in rats.Somatosensory Research 2, 335–56.Google Scholar
  36. Langerhans, P. (1868) Uber die Nerven der menschlichen Haut.Virchow's Archiv 44, 325–37.Google Scholar
  37. Lee, K. F., Li, E., Huber, L. J., Landis, S. C., Sharpe, A. H., Chao, M. V. &Jaenisch, R. (1992) Targeted mutation of the gene encoding the low affinity NGF receptor p75 leads to deficits in the peripheral sensory nervous system.Cell 69, 737–49.Google Scholar
  38. Light, A. R. &Perl, E. R. (1993), Peripheral sensory systems. InPeripheral Neurology, Vol. 1 (edited byDyck, P. J., Thomas, P. K., Griffin, J. W., Low, P. A. &Poduslo, J. F.) pp. 149–65. Philadelphia: W.B. Saunders.Google Scholar
  39. McCarthy, B. G., Hsieh, S.-T., Stocks, E. A., Hauer, P., Macko, C., Cornblath, D. R., Griffin, J. W. &McArthur, J. C. (1995) Cutaneous innervation in sensory neuropathies: evaluation by skin biopsy.Neurology 45, 1848–55.Google Scholar
  40. Mearow, K. M., Kril, Y. &Diamond, J. (1993) Increased NGF mRNA expression in denervated rat skin.Neuro-Report 4, 351–4.Google Scholar
  41. Micevych, P. E. &Kruger, L. (1992) The status of calcitonin gene-related peptide a an effector peptide.Annals of the New York Academy of Sciences 657, 379–96.Google Scholar
  42. Miledi, R. &Slater, C. K. (1970) On the degeneration of rat neuromuscular junctions after nerve section.Journal of Physiology 207, 507–28.Google Scholar
  43. Morris, J. L. &Gibbins, I. L. (1989) Co-localization and plasticity of transmitters in peripheral autonomic and sensory neurons.International Journal of Developmental Neuroscience 7, 521–31.Google Scholar
  44. Palombella, V. J., Rando, O. J., Goldberg, A. L. &Maniatis, T. (1994) The ubiquitin-proteasome pathway is required for processing the NF-kB1 precursor protein and the activation of NF-κB.Cell 78, 773–85.Google Scholar
  45. Ribeiro-Da-Silva, A., Kenigsberg, R. L. &Cuello, A. C. (1991) Light and electron microscopic distribution of nerve growth factor receptor-like immunoreactivity in the skin of the rat lower lip.Neuroscience 43, 631–46.Google Scholar
  46. Rice, F. L., Kinnman, E., Aldskogius, H., Johansson, O. &Arvidsson, J. (1993) The innervation of the mystacial pad of the rat as revealed by PGP 9.5 immunofluorescence.Journal of Comparative Neurology 337, 366–85.Google Scholar
  47. Ridley, A. (1969) Silver staining of nerve endings in human digital glabrous skin.Journal of Anatomy 104, 41–8.Google Scholar
  48. Silverman, J. D. &Kruger, L. (1989) Calcitonin-generelated-peptide-immunoreactive innervation of the rat head with emphasis on specialized sensory structures.Journal of Comparative Neurology 280, 303–30.Google Scholar
  49. Silverman, J. D. &Kruger, L. (1990) Selective neuronal glycoconjugate expression in sensory and autonomic ganglia: relation of lectin reactivity to peptide and enzyme markers.Journal of Neurocytology 19, 789–801.Google Scholar
  50. Smeyne, R. J., Klein, R., Schnapp, A., Long, L. K., Bryant, S., Lewin, A., Lira, S. A. &Barbacid, M. (1994) Severe sensory and sympathetic neuropathies in mice carrying a disrupted trk/NGF receptor gene.Nature 368, 246–9.Google Scholar
  51. Stead, R. H., Dixon, M. F., Bramwell, N. H., Riddell, R. H. &Bienenstock, J. (1989) Mast cells are closely apposed to nerves in the human gastrointestinal mucosa.Gastroenterology 97, 575–85.Google Scholar
  52. Svetikova, K. M. &Chumasov, E. I. (1987) Changes in the skin epithelium and nerve elements of the rat sole with directed regeneration of the sciatic nerve.Arkhiv Anatomii, Gistologii i Embriologii 93, 82–9.Google Scholar
  53. Thanos, D. &Maniatis, T. (1995) NF-κB: A lesson in family values.Cell 80, 529–32. (In Russian)Google Scholar
  54. Thompson, R. J., Doran, J. F., Jackson, P., Dhillon, A. P. &Rode, J. (1983) PGP 9.5—a new marker for vertebrate neurons and neuroendocrine cells.Brain Research 278, 224–8.Google Scholar
  55. Wall, J. T. &Cusick, C. G. (1984) Cutaneous responsiveness in primary somatosensory (S-I) hindpaw cortex before and after partial hindpaw deafferentation in adult rats.Journal of Neuroscience 4, 1499–515.Google Scholar
  56. Wesselingh, S. L., Power, C., Glass, J. D., Tyor, W. R., Mcarthur, J. C., Farber, J. M., Griffin, J. W. &Griffin, D. E. (1993) Intracerebral cytokine mRNA expression in acquired immunodeficiency syndrome dementia.Annals of Neurol-ogy 33, 576–82.Google Scholar
  57. Wilkinson, K. D., Lee, K., Deshpande, S., Duerksenhughes, P., Boss, J. M. &Pohl, J. (1989) The neuronspecific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase.Science 246, 670–3.Google Scholar
  58. Wilson, P. O., Barber, P. C., Hamid, Q. A., Power, B. F., Dhillon, A. P., Rode, J., Day, I. N., Thompson, R. J. &Polak, J. M. (1988) The immunolocalization of protein gene product 9.5 using rabbit polyclonal and mouse monoclonal antibodies.British Journal of Experimental Pathology 69, 91–104.Google Scholar

Copyright information

© Chapman and Hall 1996

Authors and Affiliations

  • Sung-Tsang Hsieh
    • 1
    • 4
    • 5
  • Stephen Choi
    • 1
  • Whei-Min Lin
    • 1
    • 4
  • Yangchyuan Chang
    • 5
  • Justin C. Mcarthur
    • 1
    • 3
  • John W. Griffin
    • 1
    • 2
  1. 1.Department of NeurologyThe Johns Hopkins UniversityBaltimoreUSA
  2. 2.Department of NeuroscienceThe Johns Hopkins UniversityBaltimoreUSA
  3. 3.Department of EpidemiologyThe Johns Hopkins University School of Hygiene and Public HealthBaltimoreUSA
  4. 4.Department of AnatomyNational Taiwan University College of MedicineTaipeiTaiwan
  5. 5.Department of NeurologyNational Taiwan University College of MedicineTaipeiTaiwan

Personalised recommendations