Advertisement

Biofeedback and Self-regulation

, Volume 21, Issue 2, pp 131–147 | Cite as

Cardiac rhythm effects of .125-Hz paced breathing through a resistive load: Implications for paced breathing therapy and the polyvagal theory

  • Deepa Sargunaraj
  • Paul M. Lehrer
  • Stuart M. Hochron
  • Lawrence Rausch
  • Robert Edelberg
  • Stephen W. Porges
Article

Abstract

This study examined the psychophysiological effects of slow-paced breathing while subjects breathed through external respiratory resistive loads. Twenty-four normal volunteers completed four 5-min trials of paced breathing (.125 Hz) through an inspiratory resistive wire mesh screen (0 to 25 cm H2O/L/s). Each trial was followed by a 5-min rest trial. There was evidence for hyperventilation and/or fatigue during paced breathing. Also, respiratory sinus arrhythmia (RSA) was elevated in the first minute of paced breathing, and then declined toward baseline. Heart period decreased during paced breathing trials, and fell significantly below baseline during rest periods. These data suggest decreased vagus nerve activity and/or sympathetic activation, following an initial increase in parasympathetic activity during paced breathing. They are not consistent with the use of .125-Hz paced breathing as a relaxation technique, particularly during respiratory resistive stress. Finally, although RSA and average heart period changed synchronouslywithin paced breathing and rest conditions, they diverged incomparisons between pacing and rest. This dissociation suggests that different mechanisms mediate these two cardiac parameters. These data are consistent with Porges' theory that vagal influences on tonic heart rate are mediated by the combined effect of vagal projections from both the nucleus ambiguus and the dorsal motor nucleus, while RSA is mediated only through the nucleus ambiguus alone.

Key Words

paced breathing respiratory sinus arrhythmia vagal tone flow-resistive breathing homeostasis parasympathetic system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, M., & Crowell, M. (1990). The effects of paced respiration on cardiopulmonary responses to laboratory stressors.Journal of Psychophysiology, 4, 357–368.Google Scholar
  2. Berger, R. D., Saul, J. P., & Cohen, R. J. (1989). Transfer function analysis of ventilatory adjustments during sustained mechanical loading in autonomic regulation. I. Canine atrial rate response.American Journal of Physiology, 256, H142-H152.Google Scholar
  3. Bernardi, L., Rossi, M., Soffiantino, F., Marti, G., Ricordi, L., Finardi, G., & Fratino, P. (1989). Cross correlation of heart rate and respiration versus deep breathing. Assessment of new test of cardiac autonomic function in diabetes.Diabetes, 38, 589–596.Google Scholar
  4. Bilz, R. (1966). [The vagus death. An anthropological discussion on the situations with no way out. I]. [German] Der Vagus-Tod. Eine anthropologische Eroterung über die Situatione Ausweglosigkeit (I).Medizinische Welt, 2, 117–122.Google Scholar
  5. Cappo, B. M., & Holmes, D. S. (1984). The utility of prolonged respiratory exhalation for reducing physiological and psychological arousal in nonthreatening situations.Journal of Psychosomatic Research, 28, 265–273.Google Scholar
  6. Chapman, K. R., & Rebuck, A. S. (1983). Inspiratory and expiratory resistive loading as a model of dyspnea in asthma.Respiration, 44, 425–432.Google Scholar
  7. Clark, M. E., & Hirschman, R. (1990). Effects of paced respiration on anxiety reduction in a clinical population.Biofeedback and Self Regulation, 15, 273–284.Google Scholar
  8. de Pascalis, V., Anello, A., & Venturini, R. (1986). Changes in heart rate during feedback control of respiration.Perceptual and Motor Skills, 63, 87–96.Google Scholar
  9. del Paso, G. A. R., Godoy, J., & Vila, J. (1992). Self-regulation of respiratory sinus arrhythmia.Biofeedback and Self-Regulation, 17, 261–275.Google Scholar
  10. Donchin, Y., Feld, J. M., & Porges, S. W. (1985). Respiratory sinus arrhythmia during recovery from isoflurane-nitrous oxide anesthesia.Anesthesia and Analgesia, 64, 811–815.Google Scholar
  11. Engel, B. T., & Chism, R. A. (1967). Effect of increases and decreases in breathing rate on heart rate and finger pulse volume.Psychophysiology, 4, 83–89.Google Scholar
  12. Epstein, L. H., & Webster, J. S. (1975). Instructional, pacing, and feedback control of respiratory behavior.Perceptual and Motor Skills, 41, 895–900.Google Scholar
  13. Fried, R. (1993).The psychology and physiology of breathing in behavioral medicine, clinical psychology, and psychiatry. New York: Plenum.Google Scholar
  14. Grossman, P., Karemaker, J., & Wieling, W. (1991). Prediction of tonic parasympathetic cardiac control using respiratory sinus arrhythmia: The need for respiratory control.Psychophysiology, 28, 201–216.Google Scholar
  15. Grossman, P., & Kollai, M. (1993). Respiratory sinus arrhythmia, cardiac vagal tone, and respiration: Within- and between-individual relations.Psychophysiology, 30, 486–495.Google Scholar
  16. Grossman, P., Stemmler, G., & Meinhardt, E. (1990). Paced respiratory sinus arrhythmia as an index of cardiac parasympathetic tone during varying behavioral tasks.Psychophysiology, 27, 404–416.Google Scholar
  17. Holmes, D. S., Solomon, S., Frost, R. O., & Morrow, E. F. (1980). Influence of respiratory patterns on the increases and decreases in heart rates in heart rate biofeedback training.Journal of Psychosomatic Research, 24, 147–153.Google Scholar
  18. Holmes, D. S., Solomon, S., & Buchsbaum, H. K. (1979). Utility of voluntary control of respiration and biofeedback for increasing and decreasing heart rate.Psychophysiology, 16, 432–437.Google Scholar
  19. Kitney, R. I., & Rompelman, O. (Eds.). (1980).The study of heart-rate variability. Oxford: Clarendon Press.Google Scholar
  20. Laude, D., Goldman, M., Escourrou, P., & Elghozi, J. L. (1993). Effect of breathing pattern on blood pressure and heart rate oscillations in humans.Clinical Experimental Pharmacology and Physiology, 20, 619–626.Google Scholar
  21. Lehrer, P. M., Hochron, S., Mayne, T., Isenberg, S., Carlson, V., Lasoski, A. M., Gilchrist, J., Morales, D., & Rausch, L. (1994). Relaxation and music therapies for asthma among patients prestabilized on asthma medication.Journal of Behavioral Medicine, 17, 1–24.Google Scholar
  22. McCaul, K. D., Solomon, S., & Holmes, D. S. (1979). Effects of paced respiration and expectations on physiological and psychological responses to threat.Journal of Personality and Social Psychology, 37, 564–571.Google Scholar
  23. Muzzin, S., Baconnier, P., & Benchetrit, G. (1992) Entrainment of respiratory rhythm by periodic lung inflation: Effect of airflow rate and duration.American Journal of Physiology, 263, R292-R300.Google Scholar
  24. Nelson, C. S. (1980).The effects of respiration pacing on distress and anxiety in dental treatment. Unpublished doctoral dissertation, Kent State University.Dissertation Abstracts International, 41B, 1518.Google Scholar
  25. Novak, V., Novak, P., de Champlain, J., Le Blanc, A. R., Martin, R., & Nadeau, R. (1993). Influence of respiration on heart rate and blood pressure fluctuations.Journal of Applied Physiology, 74, 617–626.Google Scholar
  26. Penaz, J. (1978). Mayer waves: History and methodology.Automedica, 2, 135–141.Google Scholar
  27. Porges, S. W. (1985). Method and apparatus for evaluating rhythmic oscillations in aperiodic physiological response systems. Patent Number: 4,510,944, April 16, 1985.Google Scholar
  28. Porges, S. (1991). Vagal tone: an autonomic mediator of affect. In J. A. Garber, & K. A. Dodge (Eds.)The development of affect regulation and dysregulation. New York: Cambridge U. P.Google Scholar
  29. Porges, S. W. (1992). Vagal tone: Physiologic marker of stress vulnerability.Pediatrics, 90, 498–504.Google Scholar
  30. Porges, (1995) Orienting in a defensive world: Mammalian modifications of our evolutionary heritage. A polyvagal theory.Psychophysiology, 32, 301–318.Google Scholar
  31. Porges, S. W., & Bohrer, R. E. (1990). Analysis of periodic processes in psychophysiological research. In J. T. Cacioppo & L. G. Tassinary (Eds.)Principles of psychophysiology: Physical, social, and inferential elements (pp. 708–753). Cambridge: Cambridge U. P.Google Scholar
  32. Porges, S. W., & Byrne, E. A. (1992). Research methods for measurement of heart rate and respiration.Biological Psychology, 34, 93–130.Google Scholar
  33. Richter, D. W., & Spyer, K. M. (1990). Cardiorespiratory control. In A. D. Loewry & K. M. Spyer (Eds.),Central Regulation of Autonomic Functions. New York: Oxford U. P. (pp. 189–207).Google Scholar
  34. Rother, M., Zwiener, U., Eiselt, M., Witte, H., Zwacka, G., & Frenzel, J. (1987) Differentiation of healthy newborns and newborns-at-risk by spectral analysis of heart rate fluctuations and respiratory movements.Early Human Development, 15, 349–363.Google Scholar
  35. Sakakibara, M., Takeuchi, S., & Hayano, J. (1994). Effect of relaxation training on cardiac parasympathetic tone.Psychophysiology, 31, 223–228.Google Scholar
  36. Singh, V., Wisniewski, A., Britton, J., & Tattersfield, A. (1990). Effect of yoga breathing exercises (pranayama) on airway reactivity in subjects with asthma.Lancet, 335, 1381–1383.Google Scholar
  37. Winer, B. J. (1962).Statistical principles in experimental design. New York: McGraw-Hill.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Deepa Sargunaraj
    • 2
  • Paul M. Lehrer
    • 2
  • Stuart M. Hochron
    • 2
  • Lawrence Rausch
    • 2
  • Robert Edelberg
    • 2
  • Stephen W. Porges
    • 1
  1. 1.University of MarylandUSA
  2. 2.Department of PsychiatryUMDNJ-Robert W. Johnson Medical SchoolPiscataway

Personalised recommendations