Annals of Operations Research

, Volume 16, Issue 1, pp 199–240

Scheduling project networks with resource constraints and time windows

  • M. Bartusch
  • R. H. Möhring
  • F. J. Radermacher
Section III Quantitative Models, Data Structuring And Information Processing


Project networks with time windows are generalizations of the well-known CPM and MPM networks that allow for the introduction of arbitrary minimal and maximal time lags between the starting and completion times of any pair of activities.

We consider the problem to schedule such networks subject to arbitrary (even time dependent) resource constraints in order to minimize an arbitrary regular performance measure (i.e. a non-decreasing function of the vector of completion times). This problem arises in many standard industrial construction or production processes and is therefore particularly suited as a background model in general purpose decision support systems.

The treatment is done by a structural approach that involves a generalization of both the disjunctive graph method in job shop scheduling [1] and the order theoretic methods for precedence constrained scheduling [18,23,24]. Besides theoretical insights into the problem structure, this approach also leads to rather powerful branch-and-bound algorithms. Computational experience with this algorithm is reported.


Scheduling project networks MPM-networks time-windows order theoretic approach to scheduling disjunctive graph method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Balas, Project scheduling with resource constraints, in:Applications of Mathematical Programming, ed. E.M.L. Beale (The English University Press, London, 1971) 187–200.Google Scholar
  2. [2]
    M. Bartusch, An algorithm for generating all maximal independent subsets of a poset, Computing 26 (1983) 343–354.Google Scholar
  3. [3]
    M. Bartusch, Optimierung von Netzplänen mit Anordnungsbeziehungen bei knappen Betriebsmitteln, Thesis, Tech. Univ. of Aachen, 1983.Google Scholar
  4. [4]
    M. Bartusch, R.H. Möhring and F.J. Radermacher, A conceptional outline of a DSS for scheduling problems in the building industry, Decision Support Systems (1988) to appear.Google Scholar
  5. [5]
    C. Berge,Graphs (North Holland, Amsterdam, 1985).Google Scholar
  6. [6]
    J. Carlier, Ordonnancements á constraintes disjonctives, RAIRO 12 (1978) 333–351.Google Scholar
  7. [7]
    J. Carlier and E. Pinson, A branch and bound method for the jobshop problem, preprint, Université de technologie de Compiegne, 1986.Google Scholar
  8. [8]
    R.W. Conway, W.L. Maxwell and L.W. Miller,Theory of Scheduling (Addison-Wesley, Reading, MA, 1967).Google Scholar
  9. [9]
    M.A.H. Dempster, J.K. Lenstra and A.H.G. Rinnooy Kan, eds.Deterministic and Stochastic Scheduling (Reidel, Dordrecht, 1982).Google Scholar
  10. [10]
    S.E. Elmaghraby,Activity Networks: Project Planning and Control by Network Models (Wiley, New York, 1977).Google Scholar
  11. [11]
    M.R. Garey and D.S. Johnson,Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979).Google Scholar
  12. [12]
    M. Glinz and R.H. Möhring, Reduction theorems for networks with general sequencing relations, Methods of Oper. Res. 27 (1977) 124–162.Google Scholar
  13. [13]
    W. Jurecka,Netzwerkplanung im Baubetrieb, Teil 2 (Optimierungsverfahren Bauverlag GmbH, Wiesbaden, 1972).Google Scholar
  14. [14]
    E.L. Lawler,Combinatorial Optimization: Networks and Matroids (Holt, Rinehart and Winston, New York, 1976).Google Scholar
  15. [15]
    E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, Recent developments in deterministic sequencing and scheduling: a survey, in:Deterministic and Stochastic Scheduling, eds. M.A.H. Dempster et al. (Reidel, Dordrecht, 1982).Google Scholar
  16. [16]
    J.K. Lenstra and A.H.G. Rinnooy Kan, Complexity of scheduling under precedente constraints, Oper. Res. 26 (1978) 22–35.Google Scholar
  17. [17]
    G. Mendzigal, Entwurf und Vergleich von Algorithmen zur Optimierung von deterministischen Netzplänen mit Betriebsmittelbeschränkungen, Master Thesis, RWTH Aachen (supervisor: R.H. Möhring), 1984.Google Scholar
  18. [18]
    R.H. Möhring, Minimizing costs of resource requirements in project networks subject to a fixed completion time, Oper. Res. 32 (1984) 89–120.Google Scholar
  19. [19]
    R.H. Möhring, Algorithmic aspects of comparability graphs and interval graphs, in:Graphs and Orders, ed. I. Rival (Reidel, Dordrecht, 1985) p. 41–101.Google Scholar
  20. [20]
    R.H. Möhring and F.J. Radermacher, Scheduling problems with resource-duration interaction, Methods of Oper. Res. 48 (1984) 423–452.Google Scholar
  21. [21]
    K. Neumann,Operations Research Verfahren, Band III (Carl Hauser Verlag, München, 1975).Google Scholar
  22. [22]
    J. Patterson, R. Slowinski, B. Talbot and J. Weglarz, An algorithm for a general class of precedence and resource constrained scheduling problems, 1982, preprint.Google Scholar
  23. [23]
    F.J. Radermacher,Kapazitätsoptimierung in Netzplänen, Math. Syst. in Econ. 40 (Anton Hain, Meisenheim, 1978).Google Scholar
  24. [24]
    F.J. Radermacher, Scheduling of project networks, Annals of Oper. Res. 4 (1986) 227–252.Google Scholar
  25. [25]
    F.J. Radermacher, Schedule-induced posets, Discrete Appl. Math 14 (1986) 67–91.Google Scholar
  26. [26]
    A.H.G. Rinnooy Kan,Machine Scheduling Problems: Classification, Complexity and Computation (Nijhoff, The Hague, 1976).Google Scholar
  27. [27]
    B. Roy, Cheminement et Connexité dans les graphes, Application aux problèmes d'ordonnancement, METRA, Série Spéciale, No. 1, (Thesis), 1962.Google Scholar
  28. [28]
    B. Roy, Graphes et Ordonnancement, Revue Française de Recherche Opérationelle (1962) 323–333.Google Scholar
  29. [29]
    J. Schwarze, Netzplantechnik für Praktiker (Verlag Neue Wirtschaftsbriefe, Herne/Berlin, 1974).Google Scholar
  30. [30]
    R. Seeling, Reihenfolgenprobleme in Netzplänen, Bauwirtschaft (1972) 1897–1904.Google Scholar
  31. [31]
    F.B. Talbot and J.H. Patterson, An efficient integer programming algorithm with network cuts for solving resource-constrained scheduling problems, Management Sci. 24 (1978) 1136–1174.Google Scholar

Copyright information

© J.C. Baltzer AG, Scientific Publishing Company 1988

Authors and Affiliations

  • M. Bartusch
    • 1
  • R. H. Möhring
    • 2
  • F. J. Radermacher
    • 3
  1. 1.Lehrstuhl für Informatik und Operations ResearchUniversität PassauW.-Germany
  2. 2.Fachbereich Mathematik, TU Berlin W.-GermanyUniversität BonnGermany
  3. 3.Forschungsinstitut für Anwendungsorientierte WissensverarbeitungUlmW.-Germany

Personalised recommendations