Biological Cybernetics

, Volume 55, Issue 5, pp 313–320 | Cite as

Combining neuropharmacology and behavior to study motion detection in flies

  • H. Bülthoff
  • I. Bülthoff


The optomotor following response, a behavior based on movement detection was recorded in the fruitflyDrosophila melanogaster before and after the injection of picrotoxinin, an antagonist of the inhibitory neurotransmitter GABA. The directional selectivity of this response was transiently abolished or inverted after injection. This result is in agreement with picrotoxinin-induced modifications observed in electrophysiological activity of direction-selective cells in flies (Bülthoff and Schmid 1983; Schmid and Bülthoff, in preparation). Furthermore, walking and flying flies treated with picrotoxinin followed more actively motion from back to front instead of front to back as in normal animals. Since the difference in the responses to front to back and back to front motions is proposed to be the basis of fixation behavior in flies (Reichardt 1973) our results support this notion and are inconsistent with schemes explaining fixation by alternative mechanisms.


Alternative Mechanism Motion Detection Normal Animal Inhibitory Neurotransmitter Front Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benzer S (1967) Behavioral mutants ofDrosophila melanogaster isolated by countercurrent distribution. Proc Natl Acad Sci USA 58:1112–1119Google Scholar
  2. Buchner E (1976) Elementary movement detectors in an insect visual system. Biol Cybern 24:85–101CrossRefGoogle Scholar
  3. Buchner E (1984) Behavioral analysis of spatial vision in insects. In: Ali A (ed) Photoreception and vision in invertebrates. Plenum Press, New York, pp 561–621Google Scholar
  4. Buchner E, Buchner S (1980) Mapping stimulus-induced nervous activity in small brain by 3H-2-deoxyglucose. Cell Tissue Res 211:51–64CrossRefPubMedGoogle Scholar
  5. Buchner E, Buchner S, Hengstenberg R (1979) 2-deoxy-D-glucose maps movement-specific nervous activity in the second visual ganglion ofDrosophila. Science 205:687–688PubMedGoogle Scholar
  6. Buchner, E., Buchner S, Bülthoff I (1984) Deoxyglucose mapping of nervous activity induced inDrosophila brain by visual movement. I. Wildtype. J Comp Physiol 155:471–483CrossRefGoogle Scholar
  7. Bülthoff H (1981) Figure-ground discrimination in the visual system ofDrosophila melanogaster. Biol Cybern 41:139–145CrossRefGoogle Scholar
  8. Bülthoff H (1982)Drosophila mutants disturbed in visual orientation. II. Mutants affected in movement and position computation. Biol Cybern 45:71–77CrossRefGoogle Scholar
  9. Bülthoff I, Buchner E (1985) Deoxyglucose mapping of nervous activity induced inDrosophila brain by visual movement. II. Optomotor blindH31 and lobula plate-lessN684 visual mutants. J Comp Physiol A 156:25–34CrossRefGoogle Scholar
  10. Bülthoff H, Bülthoff I (1985a) Umkehrung der Bewegungs- und Objektwahrnehmung durch einen GABA-Antagonisten bei Fliegen. Verh Dtsch Zool Ges 78:223Google Scholar
  11. Bülthoff H, Bülthoff I (1985b) Pharmacological inversion of directional specificity in movement detectors. Invest Ophtalmol Vis Sci 26:56Google Scholar
  12. Bülthoff H, Schmid A (1983) Neuropharmakologische Untersuchungen bewegungsempfindlicher Interneurone in der Lobula Platte der Fliege. Verh Dtsch Zool Ges 76:273Google Scholar
  13. Bülthoff H, Wehrhahn C (1984) Computation of motion and position in the visual system of the fly (Musca). Experiments with uniform stimulation. In: Varjú D, Schnitzler H-U (eds) Localization and orientation in biology and engineering. Springer, Berlin Heidelberg New York, pp 149–152Google Scholar
  14. Bülthoff H, Bülthoff I, Schmid A (1984) Beeinflussung der Bewegungsdetektion durch Neuropharmaka. Verh Dtsch Zool Ges 77:276Google Scholar
  15. Bülthoff H, Bülthoff I (1986) GABA-Antagonist inverts movement and object detection in flies. Brain Res (in press)Google Scholar
  16. Geiger G (1981) Is there a motion-independent position computation of an object in the visual system of the housefly? Biol Cybern 40:71–75CrossRefGoogle Scholar
  17. Geiger G, Nässel DR (1981) Visual orientation behavior of fly after selective laser beam ablation of interneurons. Nature 293:398–399CrossRefPubMedGoogle Scholar
  18. Geiger G, Nässel DR (1982) Visual processing of moving single objects and wide-field patterns in flies: behavioral analysis after laser-surgical removal of interneurons. Biol Cybern 44:141–149CrossRefGoogle Scholar
  19. Götz KG (1975a) The optomotor equilibrium of theDrosophila navigation system. J Comp Physiol 99:187–210CrossRefGoogle Scholar
  20. Götz KG (1975b) Hirnforschung am Navigationssystem der Fliegen. Naturwissenschaften 62:468–475CrossRefGoogle Scholar
  21. Götz KG (1983) Genetic defects of visual orientation inDrosophila. Verh Dtsch Zool Ges 1976:83–89Google Scholar
  22. Götz KG, Hengstenberg B, Biesinger R (1979) Optomotor control of wingbeat and body posture inDrosophila. Biol cybern 35:101–112CrossRefGoogle Scholar
  23. Hausen K (1981) Monocular and binocular computation of motion in the lobula plate of the fly. Verh Dtsch Zool Ges 1984:49–70Google Scholar
  24. Hausen K (1984) The lobula-complex of the fly: structure, function and significance in visual behavior. In: Ali A (ed) Photoreception and vision in invertebrates. Plenum Press, New York, pp 523–559Google Scholar
  25. Hausen K, Wehrhahn C (1983) Microsurgical lesíon of horizontal cells changes optomotor yaw responses in the blow-flyCalliphora erythrocephala. Proc R Soc London B 219:211–216Google Scholar
  26. Heisenberg M, Böhl K (1979) Isolation of anatomical brain mutants ofDrosophila by histological means. Z Naturforsch 34 C:143–147Google Scholar
  27. Heisenberg M, Wolf R (1984) Vision inDrosophila. Springer, Berlin Heidelberg New YorkGoogle Scholar
  28. Heisenberg M, Wonneberger R, Wolf R (1978) Optomotor-blindH31 aDrosophila mutant of the lobula plate giant neurons. J Comp Physiol 124:287–296CrossRefGoogle Scholar
  29. Hengstenberg R (1982) Common visual response properties of giant vertical cells in the lobula plate of the blowflyCalliphora. J Comp Physiol 169:179–193CrossRefGoogle Scholar
  30. Pick B (1974) Visual flicker induces orientation behavior in the flyMusca. Z Naturforsch 29 C:310–312Google Scholar
  31. Pick B (1976) Visual pattern discrimination as an element of the fly's orientation behavior. Biol Cyberm 23:171–180CrossRefGoogle Scholar
  32. Poggio T, Reichardt W (1976) Visual control of orientation behavior in the fly. Part II. Toward the underlying neural interactions. Q Rev Biophys 9:377–438PubMedGoogle Scholar
  33. Reichardt W (1973) Musterinduzierte Flugorientierung. Verhaltensversuche an der FliegeMusca domestica. Naturwissenschaften 60:122–138CrossRefGoogle Scholar
  34. Reichardt W, Poggio T (1976) Visual control of orientation behavior in the fly. Part I. A quantitative analysis. Q Rev Biophys 9:311–375PubMedGoogle Scholar
  35. Takeuchi A, Takeuchi N (1969) A study of the action of picrotoxin on the inhibitory neuromuscular junction of the crayfish. J Physiol 205:377–391PubMedGoogle Scholar
  36. Wehrhahn C, Hausen K (1980) How is tracking and fixation accomplished in the nervous system of the fly? Biol Cybern 38:179–186CrossRefGoogle Scholar
  37. Yarom Y, Grossman Y, Gutnik MJ, Spira ME (1982) Transient extracellular potassium accumulation produced prolonged depolarizations during synchronized bursts in picrotoxin treated cockroach CNS. J Neurophysiol 48:1089–1097PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • H. Bülthoff
    • 1
  • I. Bülthoff
    • 1
  1. 1.Max-Planck-Institut für Biologische KybernetikTübingenGermany

Personalised recommendations