Human Genetics

, Volume 97, Issue 5, pp 625–631

Characterization of the human p57KIP2 gene: Alternative splicing, insertion/deletion polymorphisms in VNTR sequences in the coding region, and mutational analysis

  • Takashi Tokino
  • Tsutomu Urano
  • Tomohisa Furuhata
  • Mieko Matsushima
  • Takashi Miyatsu
  • Shin Sasaki
  • Yusuke Nakamura
Original Investigation

Abstract

We have isolated human cDNA and genomic clones of a gene termed p57KIP2, which is related to the p21WAF1 and p27KIP1 genes that encode inducible inhibitors of cyclin-dependent kinase activity. The p57 gene contains three GC-rich introns of 166 bp, 566 bp, and 83 bp, and two of the four exons correspond to coding regions. Alternative splicing generates the heterogeneity in the translational initiations. As this gene has been localized to chromosomal band l 1p15.5, a region thought to be the location of a tumor suppressor gene(s) for carcinomas of the breast, bladder, and liver, we have examined a large number of tumors for genetic alterations of p57. Although no somatic mutation has been detected, we have found several normal variations in this gene, including four types of 12-bp in-frame deletions in the proline/alanine repeating domain, in which nearly 40 motifs, viz., 5′-CCGGCC-3′, are tandemly repeated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bullrich F, MacLachlan TK, Sang N, Druck T, Veronese ML, Allen SL, Chiorazzi N, Koff A, Heubner K, Croce CM, Giordano A (1995) Chromosomal mapping of members of the cdc2 family of protein kinases, cdk3, cdk6, PISSLRE, and PITALRE, and a cdkinhibitor, p27Kip1, to regions involved in human cancer. Cancer Res 55: 1199–1205Google Scholar
  2. Caskey CT, Pizzuti A, Fu Y-H, Fenwick Jr RG, Nelson D (1992) Triplet repeat mutations in human disease. Science 256: 784–789Google Scholar
  3. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform. Anal Biochem 162:156–159Google Scholar
  4. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAFT, a potential mediator of p53 tumor suppression. Cell 75: 817–825Google Scholar
  5. Fearon ER, Feinberg AP, Hamilton SR, Vogelstein B (1985) Loss of genes on the short arm of chromosomel 1 in bladder cancer. Nature 318: 377–380Google Scholar
  6. Flores-Rozas H, Kelman Z, Dean FB, Pan ZQ, Harper JW, Elledge SJ, O'Donell M, Hurwitz J (1994) Cdk-interacting protein 1 directly binds with proliferating cell nuclear antigen and inhibits DNA replication catalyzed by the DNA polymerase and holoenzyme. Proc Natl Acad Sci USA 91: 8655–8659Google Scholar
  7. Fujimori M, Tokino T, Hino O, Kitagawa T, Imamura T, Okamoto E, Mitsunobu M, Ishikawa T, Nakagama H, Harada H, Yagura M, Matsubara K, Nakamura Y (1991) Allelotype study of primary hepatocellular carcinoma. Cancer Res 51: 89–93Google Scholar
  8. Gu Y, Turck CW, Morgan DC (1993) Inhibition of CDK2 activity in vivo by an associated 20 K regulatory subunit. Nature 366: 707–710Google Scholar
  9. Guan K-L, Jenkins CW, Li Y, Nichols MA, Wu X, O'Keefe CL, Matera AG, Xiong Y (1994) Growth suppression by p18, a p16INK4/MTS 1 and pl4lNK4/MTS-related CDK6 inhibitor, correlates with wild-type pRb function. Genes Dev 8: 2939–2952Google Scholar
  10. Han H-J, Maruyama M, Baba S, Park J-G, Nakamura Y (1995) Genomic structure of human mismatch repair gene, hMLHI, and its mutation analysis in patients with hereditary non-polyposis colorectal cancer (HNPCC). Hum Mol Genet 4: 237–242Google Scholar
  11. Hannon GJ, Beach D (1994) p15INK4b is a potential effector of cell cycle arrest mediated by TGF-b. Nature 371: 257–261Google Scholar
  12. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 cdk-interacting protein Cipl is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75: 805–816Google Scholar
  13. Hunter T, Pines J (1994) Cyclins and cancer. II. Cyclin D and CDK inhibitors come of age. Cell 79: 573–582Google Scholar
  14. Hussussian CJ, Struewing JP, Goldstein AM, Higgins PA, Ally DS, Sheahan MD, Clark WH, Tucker MA, Dracopoli NC (1994) Germline p16 mutations in familial melanoma. Nature Genet 8: 15–21Google Scholar
  15. Kamb A, Gruis NA, Weaver-Feldhaus J, Liu Q, Harshman K, Tavtigian SV, Stockert E, Day RS III, Johnson BE, Skolnick MH (1994a) A cell cycle regulator involved in genesis of many tumor types. Science 264: 436–440Google Scholar
  16. Kamb A, Shattuck-Eidens D, Eeles R, Liu Q, Gruis NA, Ding W, Hussry C, Tran T, Miki Y, Weaver-Feldhaus J, McClure M, Aitken JF, Anderson DE, Bergman W, Frants R, Goldgar DE, Green A, MacLennan R, Martin NG, Meyer LJ, Youl P, Zone JJ, Skolnick MH, Cannon-Albright LA (1994b) Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p susceptibility locus. Nature Genet 8: 23–26Google Scholar
  17. Kawamata N, Morosetti R, Miller CW, Park D, Spirin KS, Nakamaki T, Takeuchi S, Hatta Y, Simpson J, Wilczynski S, Lee YY, Bartram CR, Koeffler HP (1995) Molecular analysis of the cyclin-dependent kinase inhibitor gene p27/Kip I in human malignancies. Cancer Res 55: 2266–2269Google Scholar
  18. Lee M-H, Reynisdottir I, Massague J (1995) Cloning of p57Kip2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev 9: 639–649Google Scholar
  19. Li R, Waga S, Hannon GJ, Beach D, Stillman B (1994) Differential effects by the p21 CDK inhibitor on PCNA dependent DNA replication and repair. Nature 371: 534–537Google Scholar
  20. Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan RS, Zborowska E, Kinzler KW, Vogelstein B, Brattain M, Willson JKV (1995) Inactivation of the type II TGF-b receptor in colon cancer cells with microsatellite instability. Science 268:1336–1338Google Scholar
  21. Matsuoka S, Edwards MC, Bai C, Parker S, Zhang P, Baldini A, Harper JW, Elledge SJ (1995) p57KIP2, a structurally distinct member of the p21CIPl Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev. 9: 650–662Google Scholar
  22. Mossese S, Ozcelik H, Lee PD, Malkin D, Bull SB, Andrulis IL (1995) Two variants of the CIPl/WAF1 gene occur together and are associated with human cancer. Hum Mol Genet 4: 1089–1092Google Scholar
  23. Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K, Carson DA (1994) Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 368: 753–756Google Scholar
  24. Noda A, Ning Y, Venable SF, Pereira-Smith OM, Smith JR (1994) Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 211: 90–98Google Scholar
  25. Pietenpol JA, Bohlander SK, Sato Y, Papadopoulos N, Liu B, Friedman C, Trask BJ, Roberts JM, Kinzler KW, Rowley JD, Vogelstein B (1995) Assignment of the human p27Kip1 gene to 12p13 and its analysis in leukemia. Cancer Res 55: 1206–1210Google Scholar
  26. Polyak K, Lee M-H, Erdjument-Bromage H, Koff A, Tempst P, Roberts JM, Massague J (1994) Cloning of p27Kip1, a cyclindependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78: 59–66Google Scholar
  27. Ponce-Castaneda MV, Lee M-H, Latres E, Polyak K, Lacombe L, Montgomer K, Mathew S, Krauter K, Sheinfeld J, Massague J, Cordon-Cardo C (1995) p27Kip1: chromosomal mapping to 12p12–12p13.1 and absence of mutations in human tumors. Cancer Res 55: 1121–1124Google Scholar
  28. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Habor, NYGoogle Scholar
  29. Serrano M, Hannon GJ, Beach D (1993) A new regulatory motif in cell cycle control causing specific inhibition of cyclinD/cdk4. Nature 366: 704–707Google Scholar
  30. Sherr CJ (1994) G1 phase progression: cyclin on cue. Cell 79: 551–555Google Scholar
  31. Shiohara M, El-Deity WS, Wada M, Nakamaki T, Takeuchi S, Yang R, Chen D-L, Vogelstein B, Koeffler HP (1994) Absence of WAF1 mutations in a variety of human malignancies. Blood 84:3781–3784Google Scholar
  32. Sudo K, Chinen K, Nakamura Y (1994) 2058 expressed sequence tags (ESTs) from a human fetal lung cDNA library. Genomics 24:276–279Google Scholar
  33. Takita K, Sato T, Miyagi M, Watatani M, Akiyama F, Sakamoto G, Kasumi F, Abe R, Nakamura Y (1992) Correlation of loss of alleles on the short arms of chromosomes 11 and 17 with metastasis of primary breast cancer to lymph nodes. Cancer Res 52: 3914–3917Google Scholar
  34. Theillet C, Lidereau R, Escot C, Hutzell P, Brunet M, Gest J, Schlom J, Callahan R (1986) Loss of a c-II-ras-1 allele and aggressive human primary breast carcinomas. Cancer Res 46: 4776–4781Google Scholar
  35. Tokino T, Takahashi E, Mori M, Tanigami A, Glaser T, Park JW, Jones C, Hori T, Nakamura Y (1991) Isolation and mapping of 62 new RFLP markers on human chromosome 11. Am J Hum Genet 48: 258–268Google Scholar
  36. Toyoshima H, Hunter T (1994) p27, a novel inhibitor of G1 cyclin/cdk protein kinase activity, is related to p21. Cell 78: 67–74Google Scholar
  37. Waga S, Hannon GJ, Beach D, Stillman B (1994) The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369: 574–578Google Scholar
  38. Xiong Y, Hannon GJ, Zang H, Casso D, Kobayashi R, Beach D (1993) p21 is a universal inhibitor of cyclin kinases. Nature 366:701–704Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Takashi Tokino
    • 1
  • Tsutomu Urano
    • 1
  • Tomohisa Furuhata
    • 1
  • Mieko Matsushima
    • 1
  • Takashi Miyatsu
    • 1
  • Shin Sasaki
    • 1
  • Yusuke Nakamura
    • 1
  1. 1.Laboratory of Molecular Medicine, The Institute of Medical ScienceThe University of TokyoTokyoJapan

Personalised recommendations