Advertisement

Clinical Autonomic Research

, Volume 9, Issue 3, pp 145–159 | Cite as

One hundred years of adrenaline: the discovery of autoreceptors

  • M. R. Bennett
Historical Review

Abstract

The active principle of suprenal extract that produces its pressor effects was isolated by the joint research of John Abel in 1899 and Jokichi Takamine in 1901. Within three years Elliott, working in Langley's laboratory, suggested that this active principle, referred to by British physiologists as “adrenaline” and named “Adrenalin” by Takamine, was released from sympathetic nerve terminals to act on smooth muscle cells. However, it was not until 1946 that von Euler showed that demythelated adrenaline (noradrenaline) rather than adrenaline is a sympathetic transmitter. The possibility that this sympathetic transmitter could also act on nerve terminals was not developed until 1971. Research on autoreceptors culminated in the identification of adrenergic receptors on nerve terminals different to those on muscle cells. This paper assesses the contributions that established the idea of the adrenergic autoreceptor, 100 years after the discovery of adrenaline.

Keywords

noradrenaline autoreceptors synapses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oliver G, Schafer EA. The physiological effects of extracts of the suprarenal capsules.J Physiol 1895; 18:230–76.Google Scholar
  2. 2.
    Abel JJ. Ueber den blutdruckerregenden Bestandtheil der Nebenniere, das Epinephrin.Z Physiol Chem 1899; 28:318–24.Google Scholar
  3. 3.
    Takamine J. The isolation of the active principle of the suprarenal gland.J Physiol 1902; 27:Pxxix-xxx.Google Scholar
  4. 4.
    Langley JN. Observations on the physiological action of extracts of the supra-renal bodies.J Physiol 1901; 27:237–256.Google Scholar
  5. 5.
    Elliott TR. On the action of adrenalin.J Physiol 1904; 32:Pxx-xxi.Google Scholar
  6. 6.
    Stolz F. Uber Adrenalin und Alkylaminoacetobrenzcatechin.Ber Dtsch Chem Ges 1904; 37:4149–4154.Google Scholar
  7. 7.
    Dakin HD. The synthesis of a substance allied to noradrenaline.Proc Roy Soc Lond Series B 1905; LXXVI:491–7.Google Scholar
  8. 8.
    Barger G, Dale HH. Chemical structure and sympathomimetic action of amines.J Physiol 1910; 41:19–59.Google Scholar
  9. 9.
    Cannon WB, Uridil JE. (1921) Studies on the conditions of activity in endocrine glands. VIII Some effects on the denervated heart of stimulating the nerves of the liver.Am J Physiol 1921; 58:353–364.Google Scholar
  10. 10.
    Bacq ZM.Chemical transmission of nerve impulses: a historical sketch. Oxford: Pergamon Press: 1974.Google Scholar
  11. 11.
    Loewi O. Uber humorale Ubertragbarkeit der Herznervenwirkung. I. Mitteilung.Pflugers Archiv. fur die Gesamte Physiologie 1921; 189:239–42.Google Scholar
  12. 12.
    Euler USV. A specific sympathomimetic Ergone in Adrenergic Nerve Fibres (Sympathin) and its relations to Adrenaline and Noradrenaline.Acta Physiol Scand 1946; 12:73–97.Google Scholar
  13. 13.
    Ahlquist RP. A study of the adrenotropic receptors.Am J Physiol 1948; 153:586–600.Google Scholar
  14. 14.
    Cannon WB, Bacq ZM. A hormone produced by sympathetic action on smooth muscle.Am J Physiol 1931; 96:392–99.Google Scholar
  15. 15.
    Jang CS. (1940) Interaction of sympathomimetic substances on adrenergic transmission.J Pharmacol 1940; 70:347–61.Google Scholar
  16. 16.
    Holzbauer M, Vogt M. Depression by reserpine of the noradrenaline concentration in the hypothalamus of the cat.J Neurochem 1956; 1:8–11.Google Scholar
  17. 17.
    Brown GL, Gillespie JS. The output of sympathetic transmitter from the spleen of the cat.J Physiol 1957; 138:81–102.Google Scholar
  18. 18.
    Koelle GB. A proposed dual neurohumoral role of acetylcholine: its function at the pre- and post-synaptic sites.Nature 1961; 190:208–11.Google Scholar
  19. 19.
    Burn JH, Rang MJ. Sympathetic postganglionic mechanism.Nature 1959; 184:163–5.Google Scholar
  20. 20.
    Wessler I. Acetylcholine at motor nerves: storage, release and presynaptic modulation by autoreceptors and adrenoceptors.Internat Rev Neurobiol 1992; 4:283–384.Google Scholar
  21. 21.
    Fredholm BB. Purinoceptors in the nervous system.Pharmacol Toxicol 1995; 76:228–39.Google Scholar
  22. 22.
    Iverson LL.The uptake and storage of noradrenaline in sympathetic nerves. Cambridge: Cambridge University Press; 1967.Google Scholar
  23. 23.
    Kirpekar SM, Puig M. Effect of flow-stop on noradrenaline release from normal spleens and spleens treated with cocaine, phentolamine or phenoxybenzamine.Br J Pharmacol 1971; 43: 359–69.Google Scholar
  24. 24.
    Blakeley AG, Brown GL. Effects of an anticholinesterase on the transmitter overflow and the response of the spleen to nerve stimulation.J Physiol 1964; 194:71–2.Google Scholar
  25. 25.
    Farnebo LO, Hamberger B. Drug-induced changes in the release of (3H)-noradrenaline from field stimulated rat iris.Br J Pharmacol 1971; 43:97–106.Google Scholar
  26. 26.
    Starke K. Influence of a-receptor stimulants on noradrenaline release.Naturwissenschaften 1971; 58:420.Google Scholar
  27. 27.
    Langer SZ, Adler-Graschinsky E, Giorgi O. (1977) Physiological significance of alpha-adrenoceptor- mediated negative feedback mechanism regulating noradrenaline release during nerve stimulation.Nature 1977; 265:648–50.Google Scholar
  28. 28.
    Polak RL. Stimulating action of atropine on the release of acetylcholine by rat cerebral cortex in vitro.Br J Pharmacol 1971; 41:600–6.Google Scholar
  29. 29.
    Johnston GA, Mitchell JF. The effect of bicuculline, metrazol, picrotoxin and strychnine on the release of (3H) GABA from rat brain slices.J Neurochem 1971; 18:2441–6.Google Scholar
  30. 30.
    Bennett MR. An electrophysiological analysis of the uptake of noradrenaline at sympathetic nerve terminals.J Physiol 1973; 229:533–46.Google Scholar
  31. 31.
    Langer SZ. Presynaptic regulation of catecholamine release.Biochem Pharm 1974;23: 1793–1800.Google Scholar
  32. 32.
    Langer SZ. The metabolism of (3H) noradrenaline released by electrical stimulation from the isolated nicitating membrane of the cat and from the vas deferens of the rat.J Physiol 1970; 208: 515–46.Google Scholar
  33. 33.
    Su C, Bevan IA. The release of H3 norepinephrine in arterial strips studied by the technique of superfusion and transmural stimulation.J Pharmac Exp Ther 1970; 172:62–71.Google Scholar
  34. 34.
    Tarlov SR, Langer SZ. The fate of 3 H-norepinephrine released from isolated atria and vas deferens: effect of field stimulation.J Pharmacol Exper Therapeut 1971; 179:186–97.Google Scholar
  35. 35.
    Langer SZ, Vogt M. Noradrenaline release from isolated muscles of the nictitating membrane of the cat.J Physiol 1971; 214: 159–71.Google Scholar
  36. 36.
    Starke K, Montel H, Schumann HJ. Influence of cocaine and phenoxbenzamine on noradrenaline uptake and release.Naunyn-Schmiedebergs Arch. Pharmakol 1971; 271:181–92.Google Scholar
  37. 37.
    Langer SZ, Adler E, Enero MA, Stefano FJE. The role of the alpha-receptors in regulating noradrenaline overflow by nerve stimulation.Proc Int Union Physiol Sci 1971; 9:335.Google Scholar
  38. 38.
    Filinger EJ, Langer SZ, Perec CJ, Stefano FJ. Evidence for the presynaptic location of the alpha-adrenoceptors which regulate noradrenaline release in the rat submaxillary gland.Naunyn-Schmiedebergs Arch Pharmacol 1978; 304:21–6.Google Scholar
  39. 39.
    Story DD, Briley MS, Langer SZ. The effects of chemical sympathectomy with 6-hydroxydopamine on alpha- adrenoceptor and muscarinic cholinoceptor binding in rat heart ventricle.Eur J Pharmacol 1979; 57:423–6.Google Scholar
  40. 40.
    Dubocovich ML, Langer SZ. Negative feed-back regulation of noradrenaline release by nerve stimulation in the perfused cat's spleen: differences in potency of phenoxybenzamine in blocking the pre- and post-synaptic adrenergic receptors.J Physiol 1974; 237:505–91.Google Scholar
  41. 41.
    Cubeddu L, Barnes EM, Langer SZ, Weiner N. Release of norepinephrine and dopamine-beta-hydroxylase by nerve stimulation. I. Role of neuronal and extraneuronal uptake and of alpha presynaptic receptors.J Pharmacol Exp Therapeut 1974; 190:431–50.Google Scholar
  42. 42.
    Starke K, Gothert M, Kilbinger H. Modulation of neurotransmitter release by presynaptic autoreceptors.Physiol Revs 1989; 69:864–989.Google Scholar
  43. 43.
    Timmermans PB, van Zwieten PA. Mini-review. The postsynaptic alpha 2-adrenoceptor.J Autonom Pharmacol 1981; 1:171–83.Google Scholar
  44. 44.
    Dismukes K, de Boer AA, Mulder AH. On the mechanism of alpha-receptor mediated modulation of 3H-noradrenaline release from slices of rat brain neocortex.Naunyn-Schmiedebergs Arch Pharmacol 1977; 299:115–22.Google Scholar
  45. 45.
    De Langen CD, Hogenboom F, Mulder AH. Presynaptic noradrenergic alpha-receptors and modulation of 3H-norarenaline release from rat brain synaptosomes.Eur J Pharmacol 1979; 60:79–89.Google Scholar
  46. 46.
    Cedarabaum JM, Aghajanian GK. Catecholamine receptors on locus coeruleus neurons: pharmacological characterisation.Eur J Pharmacol 1977; 44:375–85.Google Scholar
  47. 47.
    Freedman JE, Aghajanian GK. Idazoxan (RX 781094) selectively antagonizes alpha 2-adrenoceptors on rat central neurones.Eur J Pharmacol 1984; 105:265–72.Google Scholar
  48. 48.
    Fuder H, Muscholl E, Spemann R. The determination of presynaptic pA2 values of yohimbine and phentolamine on the perfused rat heart under conditions of negligible autoinhibition.Brit J Pharmacol 1983; 79:109–19.Google Scholar
  49. 49.
    Kalsner S. Limitations of presynaptic adrenoceptor theory: the characteristics of the effects of noradrenaline and phenoxybenzamine on stimulated-induced efflux of [3H] noradrenaline in vas deferens.J Pharmacol Exp Therapeut 1980; 212:232–9.Google Scholar
  50. 50.
    Storey DF, McCulloch MW, Standford-Starr CA, Rand MJ. conditions required for the inhibitory feedback loop in noradrenergic transmission.Nature 1981; 293:62–5.Google Scholar
  51. 51.
    Gothert M, Pohl IM, Wehking E. (1979) Effects of presynaptic modulators on Ca2+ induced noradrenaline release from central noradrenergic neurones. Noradrenaline and enkephalin inhibit release by decreasing depolarization-induced Ca2+ influx.Naunyn-Schmiedebergs Arch Pharmacol 1979; 307:21–27.Google Scholar
  52. 52.
    Elliott P, Marsh SJ, Brown DA. Inhibition of Ca-spikes in rat preganglionic cervical sympathetic nerves by sympathomimetic amines.Brit J Pharmacol 1989; 96:65–76.Google Scholar
  53. 53.
    De Groat WC, Volle RL. The actions of the catecholamines on transmission in the superior cervical ganglion of the cat.J Pharmacol Exper Therapeut 1966; 154:1–13.Google Scholar
  54. 54.
    Haefely WE. Effects of catecholamines in the cat superior cervical ganglion and their postulated role as physiological modulators of ganglionic transmission.Prog Brain Res 1969; 31:61–72.Google Scholar
  55. 55.
    Brown DA, Caulfield MP. Hyperpolarizing “alpha 2”-adrenoceptors in rat sympathetic ganglia.Br J Pharmacol 1979; 65:435–45.Google Scholar
  56. 56.
    Marshall I, Nasmyth PA, Shepperson NB. Presynaptic alpha-adrenoceptors and [3H]-noradrenaline overflow from the mouse vas deferens.Brit J Pharmacol 1978; 62:382P-3P.Google Scholar
  57. 57.
    Williams JT, Henderson G, North RA. Characterisation of alpha 2-adrenoceptors which increase potassium conductance in rat locus coeruleus neurones.Neuroscience 1985; 14:95–101.Google Scholar
  58. 58.
    Katada T, Ui M. In vitro effects of islet-activating protein on cultured rat pancreatic islets. Enhancement of insulin secretion, adenosine 3′∶5′-monophosphate accumulation and 45Ca flux.J Biochem 1981; 89:979–90.Google Scholar
  59. 59.
    Cooper DM. Bimodal regulation of adenylate cyclase.FEBS Letts 1982; 138:157–63.Google Scholar
  60. 60.
    Lai R, Watanabe Y, Yoshida H. Effect of islet-activating protein (IAP) on contractile responses of rat vas deferens: evidence for participating of Ni (Inhibiting GTP binding regulating protein) in the a2-adrenoceptor-mediated response.Eur J Pharmacol 1983; 90:453–6.Google Scholar
  61. 61.
    Allgaier C, Feuerstein TJ, Jackisch R, Hertting G. Islet-activating protein (pertussis toxin) diminishes alpha 2-adrenoceptor mediated effects on noradrenaline release.Naunyn-Schmiedebergs Arch Pharmacol 1985; 331:235–9.Google Scholar
  62. 62.
    Musgrave I, Marley P, Majewski H. (1987) Pertussis toxin does not attenuate alpha 2-adrenoceptor mediated inhibition of noradrenaline release in mouse atria.Naunyn-Schmiedebergs Archives of Pharmacology 1987; 336:280–6.Google Scholar
  63. 63.
    Dale HH. ‘John Jacob Abel 1857–1938’.Orbituary Notices of Fellows of the Royal Society, London, Royal Society 1939; 2:577–85.Google Scholar
  64. 64.
    Finger S.Origins of Neuroscience: A History of Explorations Into Brain Function. Oxford: Oxford University Press; 1994.Google Scholar

Copyright information

© Lippincott Williams & Wilkins 1999

Authors and Affiliations

  1. 1.The Neurobiology Laboratory, Institute for Biomedical Research and The Department of PhysiologyUniversity of SydneyAustralia

Personalised recommendations