Advertisement

Computing

, Volume 30, Issue 2, pp 171–178 | Cite as

On the convergence order of a modified method for simultaneous finding polynomial zeros

  • G. V. Milovanović
  • M. S. Petković
Short Communications

Abstract

Using Newton's corrections and Gauss-Seidel approach, a modification of single-step method [1] for the simultaneous finding all zeros of ann-th degree polynomial is formulated in this paper. It is shown thatR-order of convergence of the presented method is at least 2(1+τ n ) where τ n ∈(1,2) is the unique positive zero of the polynomial\(\tilde f_n (\tau ) = \tau ^n - \tau - 1\). Faster convergence of the modified method in reference to the similar methods is attained without additional calculations. Comparison is performed in the example of an algebraic equation.

AMS Subject Classification

65H05 

Key words

Determination of polynomial zeros simultaneous iterative methods accelerated convergence R-order of convergence 

Über die Konvergenz Ordnung der modifizierten Methode zur gleichzeitigen Ermittlung der Polynomwurzeln

Zusammenfassung

In dieser Arbeit wird eine Modifikation einer Einschritt-Methode [1] zur gleichzeitigen Ermittlung aller Nullstellen eines Polynomsn-ter Ordnung unter Verwendung des Gauss-Seidel-Vorgehens und Newtonscher Korrekturen vorgestellt. Es wird gezeigt, daß dieR-Ordnung der vorgestellten Methode mindestens 2(1+τ n ) beträgt, wobei τ n ∈(1,2) die eindeutige positive Wurzel des Polynoms\(\tilde f_n (\tau ) = \tau ^n - \tau - 1\) darstellt. Es wird eine schnellere Konvergenz der modifizierten Methode im Vergleich zu ähnlichen Methoden erreicht, und zwar ohne zusätzlichen Rechenaufwand. Ein Vergleichsbeispiel mit einer algebraischen Gleichung wird präsentiert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Alefeld, G., Herzberger, J.: On the convergence speed of some algorithms for the simultaneous approximation of polynomial roots. SIAM J. Numer. Anal.2, 237–243 (1974).Google Scholar
  2. [2]
    Alefeld, G., Herzberger, J.: Einführung in die Intervallrechnung. Zürich 1974.Google Scholar
  3. [3]
    Börsch-Supan, W.: A posteriori error bounds for the zeros of polynomials. Numer. Math.5, 380–398 (1963).Google Scholar
  4. [4]
    Dočev, K., Byrnev, P.: Certain modifications of Newton's method for the approximate solution of algebraic equations. Ž. Vyčisl. Mat. i Fiz.4, 915–920 (1964).Google Scholar
  5. [5]
    Ehrlich, L. W.: A modified Newton method for polynomials. Comm. ACM10, 107–108 (1967).Google Scholar
  6. [6]
    Farmer, M. R., Loizou, G.: A class of iteration functions for improving simultaneously approximations to the zeros of a polynomial. BIT15, 250–258 (1975).Google Scholar
  7. [7]
    Maehly, H. J.: Zur iterativen Auflösung algebraischer Gleichungen. Z. Angew. Math. Phys.5, 260–263 (1954).Google Scholar
  8. [8]
    Nourein, A. W.: An improvement on two iteration methods for simultaneous determination of the zeros of a polynomial. Int. J. Comput. Math.3, 241–252 (1977).Google Scholar
  9. [9]
    Ortega, J. M., Rheinboldt, W. C.: Iterative solution of nonlinear equations in several variables. New York: Academic Press 1970.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • G. V. Milovanović
    • 1
  • M. S. Petković
    • 1
  1. 1.Department of MathematicsFaculty of Electronic EngineeringNišYugoslavia

Personalised recommendations