Georgian Mathematical Journal

, Volume 3, Issue 3, pp 201–215 | Cite as

Equilibrium for perturbations of multifunctions by convex processes

  • H. Ben-El-Mechaiekh
  • W. Kryszewski


We present a general equilibrium theorem for the sum of an upper hemicontinuous convex-valued multifunction and a closed convex process defined on a noncompact subset of a normed space. The lack of compactness is compensated by inwardness conditions related to the existence of viable solutions of some differential inclusion.

1991 Mathematics Subject Classification

47H04 47H15 54H25 

Key words and phrases

Equilibrium upper hemicontinuous multifunctions with convex values closed convex processes tangency conditions viable solutions and stationary points of differential inclusions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Cornet, Paris avec handicaps et théorèmes de surjectivité de correspondances.C. R. Acad. Sc. Paris, Ser. A 281(1975), 479–482.Google Scholar
  2. 2.
    K. Fan, A minimax inequality and applications. InInequalities III (ed. byO. Shisha), 103–113;Academic Press, New York, 1972.Google Scholar
  3. 3.
    J. P. Aubin, Analyse fonctionnelle non-linéaire et applications ⦏ l'équilibre économique.Ann. Sc. Math. Québec II(1978), 5–47.Google Scholar
  4. 4.
    J. P. Aubin and H. Frankowska, Set-valued analysis.Birkhäuser, Boston, 1990.Google Scholar
  5. 5.
    G. Haddal, Monotone trajectories of differential inclusions and functional differential inclusions with memory.Israel J. Math. 39(1981), 83–100.Google Scholar
  6. 6.
    H. Ben-El-Mechaiekh, Zeros for set-valued maps with non-compact domains.C. R. Math. Rep. Acad. Sci. Canada XII(1990), 125–130.Google Scholar
  7. 7.
    J. S. Bae and S. Park, Existence of maximizable quasiconcave functions on convex spaces.J. Korean Math. Soc. 28(1991), 285–292.Google Scholar
  8. 8.
    S. Simons, An existence theorem for quasiconcave functions and applications.Nonlinear Anal. 10(1986), No. 10, 1133–1152.Google Scholar
  9. 9.
    R. T. Rockafellar, Monotone processes of convex and concave type.Mem. Amer. Math. Soc. 77(1967).Google Scholar
  10. 10.
    J. P. Aubin and R. Wets, Stable approximations of set-valued maps.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 5(1988), 519–535.Google Scholar
  11. 11.
    G. N. Bergman and B. R. Halpern, A fixed point theorem for inward and outward maps.Trans. Amer. Math. Soc. 130(1968), 353–358.Google Scholar
  12. 12.
    K. Fan, Some properties of convex sets related to fixed point theorems.Math. Ann. 266(1984), 519–537.Google Scholar
  13. 13.
    M. Lassonde, On the use of KKM multifunctions in fixed point theory and related topics.J. Math. Anal. Appl. 97(1983), 151–201.Google Scholar
  14. 14.
    H. Ben-El-Mechaiekh, P. Deguire and A. Granas, Une alternative non linéaire en analyse convexe et applications.C. R. Acad. Sc. Paris 295(1982), 257–259; Points fixes et coincidences pour les applications multivoques II, (applications de type π et π*), IbidemC.R. Acad. Sc. Paris 295(1982), 381–384Google Scholar
  15. 15.
    F. Browder, The fixed point theory of multi-valued mappings in topological vector spaces.Math. Ann. 177(1968), 238–301.Google Scholar
  16. 16.
    H. Ben-El-Mechaiekh, Quelques principes topologiques en analyse convexe, parties I et II.Rapports de recherche 88-20, 21,Département de Math. et de Stat., Université de Montréal, 1988.Google Scholar
  17. 17.
    J. C. Bellenger, Existence of maximizable quasiconcave functions on paracompact convex spaces.J. Math. Anal. Appl. 123(1987), 333–338.Google Scholar
  18. 18.
    S. Park, Generalizations of Ky Fan's matching theorems and their applications.J. Korean Math. Soc. 28(1991), 275–283.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • H. Ben-El-Mechaiekh
    • 1
  • W. Kryszewski
    • 2
  1. 1.Department of MathematicsBrock UniversitySt. CatharinesCanada
  2. 2.Instytut MatematykiUniversytet Mikolaja KopernikaTorúnPoland

Personalised recommendations