Advertisement

Calcified Tissue Research

, Volume 4, Issue 1, pp 94–100 | Cite as

The effect of excessive acid feeding on bone

  • Uriel S. Barzel
Original Papers

Abstract

Excessive administration of ammonium chloride to normal adult male rats receiving a diet adequate in vitamin D caused the development of osteoporosis. The osteoporosis was due to loss of bone substance and bone mineral associated with increased bone resorption.

Key words

Acid Base equilibrium Acidosis Bone Resorption Metabolism Osteoporosis 

Résumé

L'administration chronique de chlorure d ammonium à des rats adultes normaux, soumis à un régime contenant un taux approprié de vitamine D, provoque une ostéoporose. Celle-ci est provoquée par une perte de substance d'os et de minéral osseux, associée à l'augmentation de la résorption osseuse.

Zusammenfassung

Chronische Verabreichung von Ammoniumchlorid an normale ausgewachsene männliche Ratten, die eine entsprechende Vitamin-D-haltige Diät erhalten, verursacht die Entwicklung einer Osteoporose.

Die Osteoporose entsteht auf Grund eines Verlustes von Knochensubstanz und Knochenmineral, in Begleitung einer erhöhten Knochenresorption.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albright, F., Reifenstein, F. G., Jr.: The parathyroid glands and metabolic bone disease, p. 241–247. Baltimore: Williams & Wilkins Co. 1948.Google Scholar
  2. Barzel, U., Jowsey, J.: The effect of chronic acid and alkali intake on bone turnover in adult rats. Clin. Sci.36, 517–524 (1969).Google Scholar
  3. Bauer, W., Aub, J. C., Albright, F.: Studies of calcium and phosphorus metabolism. v. A study of the bone trabeculae as a readily available reserve supply of calcium. J. exp. Med.49, 145–161 (1929).Google Scholar
  4. Goto, K.: Mineral metabolism in experimental acidosis. J. biol. Chem.36, 355 (1918).Google Scholar
  5. Gron, P., McCann, H. G., Bernstein, D.: Effect of fluoride on human osteoporotic bone mineral. J. Bone Jt Surg. A48, 892–898 (1966).Google Scholar
  6. Harper, R. A., Posner, A. S.: Measurement of non crystalline calcium phosphate in bone mineral. Proc. Soc.122, 137–142 (1966).Google Scholar
  7. Harrison, M., Fraser, R.: Bone structure and metabolism in calcium-deficient rats. J. Endocr.21, 197–204 (1960).Google Scholar
  8. Jaffe, H. L., Bodansky, A., Chandler, J. P.: Ammonium chloride decalcification, as modified by calcium intake: The relation between generalized osteoporosis and ostitis fibrosa. J. exp. Med.56, 823–834 (1932).Google Scholar
  9. Jowsey, J., Gershon-Cohen, J.: Effect of dietary calcium levels on production and reversal of experimental osteoporosis in cats. Proc. Soc.116, 437–441 (1964).Google Scholar
  10. —, Raisz, L. G.: Experimental osteoporosis and parathyroid activity. Endocrinology82, 384–396 (1968).Google Scholar
  11. Nichols, G., Jr., Nichols, N.: Effect of parathyroidectomy on content and availability of skeletal sodium in the rat. Amer. J. Physiol.198, 749–753 (1960).Google Scholar
  12. Willis, J. B.: Determination of calcium and magnesium in urine by atomic absorption spectrometer. Analyt. Chem.33, 556–559 (1961).Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • Uriel S. Barzel
    • 1
  1. 1.Metabolic Endocrine LaboratoryDivision of Medicine Montefiore Hospital and Medical Center BronxBronx

Personalised recommendations