, Volume 38, Issue 4, pp 315–324 | Cite as

Distributions of floating point numbers

  • J. K. Scheidt
  • C. W. Schelin
Contributed Papers


The logarithmic distribution is commonly used to model mantissae of floating point numbers. It is known that floating point products of logarithmically distributed mantissae are logarithmically distributed, while floating point sums are not. In this paper a distribution for floating point sums is derived, and for a special case of logarithmically distributed mantissae the deviation of this distribution from the logarithmic distribution is determined.


Computational Mathematic Point Product Point Number Float Point Number Logarithmic Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Verteilungen von Gleitpunktzahlen


Zur Modellierung der Mantissen von Gleitpunktzahlen wird im allgemeinen eine logarithmische Verteilung verwendet. Dabei sind Gleitpunkt-Produkte von logarithmisch verteilten Mantissen wieder logarithmisch verteilt, nicht jedoch Gleitpunkt-Summen. In dieser Arbeit wird eine Verteilung für Gleitpunkt-Summen hergeleitet; für einen Spezialfall wird die Abweichung dieser Verteilung von der logarithmischen Verteilung bestimmt.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bedford, F.: The law of anomalous numbers. Proc. Amer. Phil. Soc.78, 551–572 (1939).Google Scholar
  2. [2]
    Flehinger, B.: On the probability that a random integer has initial digit A. Amer. Math. Monthly73, 1056–1061 (1966).Google Scholar
  3. [3]
    Goodman, R., Feldstein, A.: Round-off error in products. Computing18, 263–273 (1975).CrossRefGoogle Scholar
  4. [4]
    Goodman, R., Feldstein, A.: The effect of guard digits and normalization options on floating point multiplication. Computing18, 93–106 (1977).CrossRefGoogle Scholar
  5. [5]
    Hamming, R.: On the distribution of numbers. Bell Tech. J.49, 1609–1625 (1970).Google Scholar
  6. [6]
    Henrici, P.: Applied and Computational Complex Analysis, Vol. 2. New York: Wiley 1977.Google Scholar
  7. [7]
    Knuth, D.: The Art of Computer Programming, Vol. 2, Seminumerical Algorithms. Reading, Mass.: Addison-Wesley 1969.Google Scholar
  8. [8]
    Newcomb, S.: A note on the frequency of use of the different digits in natural numbers. Amer. J. Math.4, 39–40 (1881).MathSciNetGoogle Scholar
  9. [9]
    Pinkham, R.: On the distribution of first significant digits. Amer. Math. Stat.32, 1223–1230 (1961).Google Scholar
  10. [10]
    Raimi, R.: On the distribution of first significant figures. Amer. Math. Monthly76, 342–348 (1969).Google Scholar
  11. [11]
    Tsao, N.: On the distribution of significant digits and roundoff errors. Comm. Ass. Comp. Mach.17, 269–271 (1974).Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • J. K. Scheidt
    • 1
  • C. W. Schelin
    • 1
  1. 1.Department of MathematicsUniversity of Wisconsin-La CrosseLa CrosseUSA

Personalised recommendations