Advertisement

Osmotic responses of eggs and larvae of the Pacific herring to salinity and cadmium

  • D. F. Alderdice
  • T. R. Rao
  • H. Rosenthal
Article

Abstract

Pacific herring (Clupea pallasi) eggs fertilized in 20‰S and incubated in 5, 20 or 35‰ S at 5°C, some being cross-transferred between 5 and 35‰ S, 61.8 hr after fertilization, showed variable yolk and perivitelline fluid (PVF) osmolalities until beginning of epiboly. Coincident with blastopore closure and for a period of ca. 150 hr thereafter (period of stability), both yolk and PVF osmoconcentrations were relatively constant. Thereafter osmolalities rose slowly to asymptotic levels prior to hatching. Osmolal values in the period of relative stability (100–250 hr) were approximately (a) yolk: 285–310 (5‰ S), 350 (20‰ S), and 390 mOsm (35‰ S); (b) perivitelline fluid: 105–118 (5‰ S), 370 (20‰ S), and 530–670 mOsm (35‰ S). Prior to hatching, these were (a) yolk: 330–350 (5‰ S), 400 (20‰ S), and 460–480 mOsm (35‰ S); (b) perivitelline fluid: 175–210 (5‰ S), 530 (20‰ S), and 850–860 mOsm (35‰ S). Yolk osmolalities decreased, after hatching of the larvae, to approximate those levels attained between 100 and 250 hr. An hypothesis is presented whereby minimum osmotic work is defined on the basis of isosmotic relations existing between yolk, perivitelline fluid, and incubation medium. This leads to the description of a range of salinities defined in terms of osmoregulatory scope. At the 5°C test temperature, incubation salinities associated with maximum osmoregulatory scope (13.2–19‰) correspond closely to the range of salinities providing maximum or near-maximum hatches of viable larvae. The presence of a salinity-temperature interaction and its inlfuence on the association between osmoregulatory scope and production of viable larvae is suggested as a mechanism underlying and providing the recognized plasticity of Pacific herring egg development. In a companion study involving cadmium as a contaminant, eggs incubated at 20‰ S were exposed to 0, 1 or 10 ppm Cd in 5, 20 or 35‰ S for 48-hr periods at six stages of development between fertilization and hatching. Cd exposure resulted in a reduction in osmolality of perivitelline fluid. Reduction was greater in higher Cd concentrations and in eggs transferred to higher salinities. An hypothesis is presented to explain observed effects of Cd exposure on some physical properties of teleost eggs, including reductions in perivitelline fluid osmolality and egg volume. Finally, newly hatched (0-, 3-, 6- and 9-day old) larvae from eggs incubated at 20‰ S (8.5°C) were exposed to salinities from 0 to 50‰ for a period of 72 hr. Median tolerance limits (72-hr) were 2.8–5.2‰ for low salinities and 33–35.8‰ for high salinities. No trends in salinity tolerance were noted amongst the four ages of larvae. The data suggest that natural larvae entrained in sea water would be susceptible to salinity-induced mortality in salinities greater than about 20‰ However, this conclusion is subject to confirmation in view of the low/low-high/high salinity-temperature interaction previously noted in relation to egg development, and its possible continuing influence in larval stages.

Keywords

Viable Larva Pacific Herring Fluid Osmolality Perivitelline Fluid Blastopore Closure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Eier des pazifischen Herings wurden mit einem Salzgehalt von 20‰ S befruchtet und in 5,20 und 35‰ S bei 5°C erbrütet. Etwa 62 h nach der Befruchtung wurden Eier aus einigen Erbrütungsansätzen von 5 nach 35‰ S und von 35 nach 5‰ überführt. Die Veränderungen der Osmokonzentration der perivitellinen Flüssigkeit und des Dotters wurden in allen Versuchsreihen von der Befruchtung an bis zum Schlupf im 24-h-Intervall verfolgt. In allen fünf Versuchskombinationen war die Osmolalität des Dotters und der perivitellinen Flüssigkeit bis zum Einsetzen der Epibolie sehr variabel. Unmittelbar nach Verschluß des Blastoporus (105–130 h nach der Befruchtung) war in beiden Medien ein relativ stabiler Zustand der osmotischen Verhältnisse erreicht, der bis zu einem Alter der Embryonen von 250 h anhielt. Danach stieg die Osmokonzentration bis zum Schlupf auf ein Maximum asymptotisch an. Das Verhältnis zwischen Salinität und den Osmokonzentrationen des Dotters und der perivitellinen Flüssigkeit zur Zeit der relativen osmotischen Stabilität deutet darauf hin, daß ein Minimum an osmoregulatorischer Arbeit bei einem Salzgehalt von 10.3 bis 11.1‰ S aufgebracht werden muß, während kurz vor dem Schlupf dieser Wert bei 12–12.3‰ S liegt. Für den Dotter liegen die optimalen Osmokonzentrationen, bei denen ein Minimum an osmoregulatorischer Arbeit zu leisten ist, für die beiden entsprechenden Inkubationsabschnitte bei 10.3–19‰ S und 12–13.2‰ S. In diesem Salzgehaltsbereich werden auch maximale Schlupfraten gesunder, lebensfähiger Larven erzielt. In einer weiteren Versuchsreihe wurden Eier, die in 20‰ S bei 5°C befruchtet waren, auf sechs verschiedenen Entwicklungsstadien in Salzgehalte von 5,20 und 35‰ S überführt, wobei die Inkubationsmedien gleichzeitig mit Cadmium (Konzentrationen: 0,1 und 10 ppm) kontaminiert waren. Im Verlauf von 48 h nach der Überführung der Eier in diese Inkubationsmedien lag eine deutliche Erniedrigung der Osmolalität in der Periviltellinflüssigkeit vor. Sie stieg mit zunehmendem Salzgehalt und zunehmender Cadmiumkonzentration. In einer weiteren Versuchsreihe wurden geschlüpfte Larven (Alter 0, 3, 6 und 9 Tage) 72 h lang verschiedenen Salzgehalten zwischen 0 und 50‰ S ausgesetzt. Die unteren und oberen MTL-Werte (mittlere Toleranzgrenze) lagen bei 2.8–5.2‰ und 33–35.8‰ S. Die Salzgehaltstoleranz war nicht abhängig vom Alter der Larven. Die Osmolalität des Dotters frischgeschlüpfter Larven entspricht der von Embryonen zur Zeit weitgehender osmotischer Stabilität (100–250 h nach der Befruchtung).

Literature Cited

  1. Alderdice, D. F. & Velsen, F. P. J., 1971. Some effects of salinity and temperature on early development of Pacific herring (Clupea pallasi). J. Fish. Res. Bd Can.28, 1545–1562.Google Scholar
  2. —— 1978. Effects of short-term storage of gametes on fertilization of Pacific herring eggs. Helgoländer wiss. Meeresunters.31, 485–498.CrossRefGoogle Scholar
  3. —, Rosenthal, H. & Velsen, F. P. J., 1979a. Influence of salinity and cadmium on capsule strength in Pacific herring eggs. Helgoländer wiss. Meeresunters.32, 149–162.CrossRefGoogle Scholar
  4. ——— 1979b. Influence of salinity and cadmium on the volume of Pacific herring eggs. Helgoländer wiss. Meeresunters.32, 163–178.CrossRefGoogle Scholar
  5. Blaxter, J. H. S. & Holliday, F. G. T., 1963. The behaviour and physiology of herring and other clupeids. Adv. mar. Biol.1, 261–393.Google Scholar
  6. Dushkina, L. A., 1973. Influence of salinity on eggs, sperm, and larvae of low-vertebral herring reproducing in the coastal waters of the Soviet Union. Mar. Biol.19, 210–223.CrossRefGoogle Scholar
  7. Eddy, F. B., 1974. Osmotic properties of the perivitelline fluid and some properties of the chorion of Atlantic salmon eggs (Salmo salar). J. Zool., Lond.174, 237–243.Google Scholar
  8. Finney, D. J., 1952. Probit analysis. Cambridge Univ., London, 318 ppGoogle Scholar
  9. Frick, J. H., & Sauer, J. R., 1973. Examination of a biological cryostat/nanoliter osmometer for use in determing the freezing point of insect hemolymph. Ann. ent. Soc. Am.66, 781–783.Google Scholar
  10. Fujita, T., & Kokubo, S., 1927. Studies on herring. Bull. Sci. Fish. Hokkaido imp. Univ.1, 1–127.Google Scholar
  11. Holliday, F. G. T., 1965. Osmoregulation in marine teleost eggs and larvae. Calif. Coop. Oceanic Fish. Invest.10, 89–95.Google Scholar
  12. —, 1969. The effects of salinity on the eggs and larvae of teleosts. In: Fish physiology. Ed by W. S. Hoar & D. J. Randall. Acad. Press, New York, 293–311.Google Scholar
  13. — & Blaxter, J. H. S., 1960. The effects of salinity on the developing eggs and larvae of the herring. J. mar. biol. Ass. U. K.39, 591–603.Google Scholar
  14. — & Jones, M. P., 1960. Osmotic regulation in the embryo of the herring (Clupea harengus). J. mar. biol. Ass. U. K.45, 305–311.Google Scholar
  15. ——, 1967. Some effects of salinity on the developing eggs and larvae of the plaice (Pleuronectes platessa). J. mar. biol. Ass. U. K.47, 39–48.Google Scholar
  16. Kurata, H., 1959. Preliminary report on the rearing of the herring larvae. Bull. Hokkaido reg. Fish. Res. Lab.20, 117–138.Google Scholar
  17. Kusa, M., 1949. Further notes on the hardening of the chorion of salmon eggs. Cytologia15, 145–148.Google Scholar
  18. Loeffler, C. A., & Løvtrup, S., 1970. Water balance in the salmon egg. J. exp. Biol.52, 291–298.Google Scholar
  19. McMynn, R. G., & Hoar, W. S., 1953. Effects of salinity on the development of the Pacific herring. Can. J. Zool.31, 417–432.Google Scholar
  20. Nakano, E., 1969. Fertilization. In: Comparative morphology, biochemistry, and immunology. Ed. by C. B. Metz & A. Monroy. Acad. Press, New York,2, 295–324.Google Scholar
  21. Potts, W. T. W., & Parry, G., 1964. Osmotic and ionic regulation in animals. Pergamon Press, New York, 423 pp.Google Scholar
  22. — & Rudy, Jr., P. P., 1969. Water balance in the eggs of the Atlantic salmon,Salmo salar. J. exp. Biol.50, 223–237.PubMedGoogle Scholar
  23. Remy, H., 1956. Treatise on inorganic chemistry. Elsevier, Amsterdam,2, 1–800.Google Scholar
  24. Rosenthal, H., & Sperling, K.-R., 1974. Effects of cadmium on development and survival of herring eggs. In: The early live history of fish. Ed. by J. H. S. Blaxter. Springer, Berlin, 383–396.Google Scholar
  25. Solemdal, P., 1967. The effect of salinity on buoyancy, size and development of flounder eggs. Sarsia29, 431–442.Google Scholar
  26. ——, 1971. Prespawing flounders transferred to different salinities and the effects on their eggs. Vie Mileu, (Suppl.).22, 409–423.Google Scholar
  27. Stevenson, J. C., 1962. Distribution and survival of herring larvae (Clupea pallasi Valenciennes) in British Columbia waters. J. Fish. Res. Bd Can.19, 735–810.Google Scholar
  28. Washburn, E. W., 1928. International critical tables. McGraw-Hill, New York,4, 1–481Google Scholar
  29. Weast, R. C. (Ed.), 1969. Handbook of chemistry and physics. The Chemical Rubber Co., Cleveland, Ohio, Getr. Pag.Google Scholar
  30. Westernhagen, H. von & Dethlefsen, V. 1975. Combined effects of cadmium and salinity on development and survival of flounder eggs. J. mar. biol. Ass. U. K.55, 945–957.Google Scholar
  31. —— & Rosenthal, H., 1975. Combined effects of cadmium and salinity on development and survival of garpike eggs. Helgoländer Wiss. Meeresunters.27, 268–282.CrossRefGoogle Scholar
  32. — & Rosenthal, H. & Sperling, K.-R., 1974. Combined effects of cadmium and salinity on development and survival of herring eggs. Helgoländer wiss. Meerésunters.26, 416–433.CrossRefGoogle Scholar
  33. Zotin, A. I., 1958. The menbrane hardening enzyme of salmon eggs. Dokl. Akad. Nauk SSSR121, 1105–1108.Google Scholar

Copyright information

© Biologischen Anstalt Helgoland 1979

Authors and Affiliations

  • D. F. Alderdice
    • 1
  • T. R. Rao
    • 1
  • H. Rosenthal
    • 2
  1. 1.Department of Fisheries and the EnvironmentFisheries and Marine Service, Pacific Biological StationNanaimoCanada
  2. 2.Biologische Anstalt Helgoland (Zentrale)Hamburg 50Federal Republic of Germany

Personalised recommendations