Advertisement

An empirical evaluation of earth’s surface air temperature response to radiative forcing, including feedback, as applied to the CO2-climate problem

  • S. B. Idso
Article

Summary

Several natural experiments are analyzed to yield equilibrium values of a surface air temperature response function and a feedback factor for Earth’s atmosphere. The former parameter, the change in surface air temperature induced by a change in radiant energy absorbed at the surface, is demonstrated to have a value of about 0.1 K (Wm−2)−1; while the latter parameter, the ratio of feedback-induced change in radiant energy to the surface of the Earth divided by an initial or primary change in radiant energy to the Earth’s surface, is demonstrated to have a value of about 1.25. These two numbers imply that the maximum warming to be expected from a doubling of Earth’s atmospheric CO2 concentration from 300 to 600 ppm is only about 0.1 K, a result so small as to possibly be completely counter-balanced by the CO2-induced reduction of solar radiation transmission to the Earth’s surface.

Keywords

Radiant Energy Empirical Evaluation Maximum Warming Radiation Transmission Feedback Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Eine empirische Auswertung des Ansprechens der Lufttemperatur in Bodennähe auf Strahlungseinflüsse unter Einbeziehung von Rückkopplungsprozessen im Hinblick auf das CO2-Klima-Problem

Zusammenfassung

Einige natürliche Experimente werden analysiert, um Gleichgewichtswerte einer Folgefunktion der Lufttemperatur in Bodennähe und eines Rückkopplungsfaktors für die Erdatmosphäre zu erhalten. Der erste der beiden Parameter beinhaltet die änderung der Bodenlufttemperatur, hervorgerufen durch eine Änderung in der an der Oberfläche absorbierten Strahlungsenergie, und besitzt eine Größenordnung von 0.1 K (Wm−2)−1. Der letztere der beiden Parameter beschreibt das Verhältnis zwischen den durch Rückkopplung erzeugten änderungen in der von der Erdoberfläche aufgefangenen Strahlungsenergie und den anfänglichen, oder primären, Änderungen in dieser Energie. Dieser Parameter besitzt eine Größenordnung von 1.25. Diese zwei Zahlen besagen, daß die Maximalerwärmung, die man von einer Verdopplung des CO2-Gehaltes der Erdatmosphäre von 300 auf 600 ppm erwarten kann, nur ungefähr 0.1 K beträgt. Dieser Wert ist so klein, daß er womöglich völlig durch die vom CO2 bewirkte Reduktion der zur Erdoberfläche durchgelassenen Sonnenstrahlung aufgehoben wird.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Choudhury, B., Kukla, G.: Impact of CO2 on Cooling of Snow and Water Surfaces. Nature280, 668–671 (1979).Google Scholar
  2. 2.
    Crane, A. J.: Comments on Recent Doubts about the CO2 Greenhouse Effect. J. Appl. Met.20, 1547–1549 (1982).Google Scholar
  3. 3.
    Hansen, J., Johnson, D., Lacis, A., Lebedeff, S., Lee, P., Rind, D., Russell, G.: Climate Impact of Increasing Atmospheric Carbon Dioxide. Science213, 957–966 (1981).Google Scholar
  4. 4.
    Haurwitz, B., Austin, J. M.: Climatology. New York: McGraw-Hill Book Co. 1944.Google Scholar
  5. 5.
    Idso, S. B.: The Climatological Significance of a Doubling of Earth’s Atmospheric Carbon Dioxide Concentration. Science207, 1462–1463 (1980).Google Scholar
  6. 6.
    Idso, S. B.: Carbon Dioxide and Climate. Science210, 7–8 (1980).Google Scholar
  7. 7.
    Idso, S. B.: CO2 and Climate. Weatherwise34, 142 (1981).Google Scholar
  8. 8.
    Idso, S. B.: Carbon Dioxide — An Alternative View. New Scientist92, 444–446 (1981).Google Scholar
  9. 9.
    Idso, S. B.: An Experimental Determination of the Radiative Properties and Climatic Consequences of Atmospheric Dust under Nonduststorm Conditions. Atmos. Environm.15, 1251–1259 (1981).Google Scholar
  10. 10.
    Idso, S. B.: A Set of Equations for Full Spectrum and 8–14 μm and 10.5–12.5 μm Thermal Radiation from Cloudless Skies. Water Resources Res.17, 295–304 (1981).Google Scholar
  11. 11.
    Idso, S. B.: Reply to A. J. Crane’s “Comments on Recent Doubts about the CO2 Greenhouse Effect.” J. Appl. Met.21, 748 (1982).Google Scholar
  12. 12.
    Idso, S. B.: Letter to Editor. Sci. Amer.247(5), 6 (1982).Google Scholar
  13. 13.
    Idso, S. B.: A Surface Air Temperature Response Function for Earth’s Atmosphere. Boundary-Layer Met.22, 227–232 (1982).Google Scholar
  14. 14.
    Idso, S. B.: An Empirical Evaluation of Earth’s Surface Air Temperature Response to an Increase in Atmospheric Carbon Dioxide Concentration. In: AIP Conf. Proc. No. 82: Interpretation of Climate and Photochemical Models, Ozone and Temperature Measurements (Beck, R. A., Hummel, J. R., eds.), pp. 119–134. New York: American Institute of Physics 1982.Google Scholar
  15. 15.
    Idso, S. B.: Carbon Dioxide: Friend or Foe? IBR Press, 631 E. Laguna Dr., Tempe, AZ 85282, 92 p. (1982).Google Scholar
  16. 16.
    Idso, S. B.: It’s All in the Bulletin! Bull. Amer. Met. Soc.64, 518–519 (1983).Google Scholar
  17. 17.
    Idso, S. B.: CO2 as an Inverse Greenhouse Gas. In: Infrared Technology IX (Spiro, I. J., Mollicone, R. A., eds.), pp. 232–239. Proc. SPIE 430, 1983.Google Scholar
  18. 18.
    Idso, S. B.: What if Increases in Atmospheric CO2 have an Inverse Greenhouse Effect? I. Energy Balance Considerations Related to Surface Albedo. J. Climatol. (In press.)Google Scholar
  19. 19.
    Idso, S. B., Brazel, A. J.: Climatological Effects of Atmospheric Particulate Pollution. Nature274, 781–782 (1978).Google Scholar
  20. 20.
    Idso, S. B., Kangieser, P. C.: Seasonal Changes in the Vertical Distribution of Dust in the Lower Troposphere. J. Geophys. Res.75, 2179–2184 (1970).Google Scholar
  21. 21.
    Idso, S. B., Quinn, J. A.: Vegetational Redistribution in Arizona and New Mexico in Response to a Doubling of the Atmospheric CO2 Concentration. Arizona State University Laboratory of Climatology, Climatological Publications Scientific Paper No. 17, 52 p. (1983).Google Scholar
  22. 22.
    Kiehl, J. T., Ramanathan, V.: Radiative Heating Due to Increased CO2: The Role of H2O Continuum Absorption in the 12–18 pm Region. J. Atmos. Sci.39, 2923–2926 (1982).Google Scholar
  23. 23.
    Kimball, B. A., Idso, S. B., Aase, J. K.: A Model of Thermal Radiation from Partly Cloudy and Overcast Skies. Water Resources Res.18, 931–936 (1982).Google Scholar
  24. 24.
    Leovy, C. B.: Carbon Dioxide and Climate. Science210, 7 (1980).Google Scholar
  25. 25.
    MacCracken, M. C.: CO2 Concentration. Weatherwise34, 236–237 (1981).Google Scholar
  26. 26.
    MacCracken, M. C., Moses, H.: The First Detection of Carbon Dioxide Effects: Workshop Summary 8–10 June 1981, Harpers Ferry, W. Va. Bull. Amer. Met. Soc.63, 1164–1178 (1982).Google Scholar
  27. 27.
    Manabe, S., Wetherald, R. T.: The Effects of Doubling the CO2 Concentration on the Climate of a General Circulation Model. J. Atmos. Sci.32, 3–15 (1975).Google Scholar
  28. 28.
    National Research Council (U.S.), CO2/Climate Review Panel: Carbon Dioxide and Climate: A Scientific Assessment. Washington, D.C.: National Academy Press 1979.Google Scholar
  29. 29.
    National Research Council (U.S.), CO2/Climate Review Panel: Carbon Dioxide and Climate: A Second Assessment. Washington, D.C.: National Academy Press 1982.Google Scholar
  30. 30.
    National Research Council (U.S.), Carbon Dioxide Assessment Committee: Changing Climate. Washington, D.C.: National Academy Press 1983.Google Scholar
  31. 31.
    Newell, R. E., Dopplick, T. G.: Questions Concerning the Possible Influence of Anthropogenic CO2 on Atmospheric Temperature. J. Appl. Met.18, 822–825 (1979).Google Scholar
  32. 32.
    Newell, R. E., Dopplick, T. G.: Reply to Robert G. Watts ‘“Discussion of Questions Concerning the Possible Influence of Anthropogenic CO2 on Atmospheric Temperature‘’. J. Appl Met.20, 114–117 (1981).Google Scholar
  33. 33.
    Ramanathan, V.: The Role of Ocean-Atmosphere Interactions in the CO2 Climate Problem. J. Atmos. Sci.38, 918–930 (1981).Google Scholar
  34. 34.
    Ramanathan, V.: The Role of Ocean-Atmosphere Interactions in the CO2 Climate Problem. In: AIP Conf. Proc. No. 82: Interpretation of Climate and Photochemical Models, Ozone and Temperature Measurements (Reek, R. A., Hummel, J. R., eds.), pp. 275–291. New York: American Institute of Physics 1982.Google Scholar
  35. 35.
    Revelle, R.: Letter to Editor. Sci. Amer.247(5), 7–9 (1982).Google Scholar
  36. 36.
    Schmidli, R. J., Kangieser, P. C., Ingram, R. S.: Climate of Phoenix. NOAA Tech. Memo. NWS WR38 (1971).Google Scholar
  37. 37.
    Schneider, S. H.: On the Carbon Dioxide-Climate Confusion. J. Atmos. Sci.32, 2060–2066 (1975).Google Scholar
  38. 38.
    Schneider, S. H., Thompson, S. L.: Atmospheric CO2 and Climate: Importance of the Transient Response. J. Geophys. Res.86, 3135–3147 (1981).Google Scholar
  39. 39.
    Schneider, S. H., Kellogg, W. W., Ramanathan, V.: Carbon Dioxide and Climate. Science210, 6–7 (1980).Google Scholar
  40. 40.
    Sellers, W. D.: Physical Climatology. Chicago: The Univ. of Chicago Press 1965.Google Scholar
  41. 41.
    Warren, S. G., Schneider, S. H.: Seasonal Simulation as a Test for Uncertainties in the Parameterizations of a Budyko-Sellers Zonal Climate Model. J. Atmos. Sci.36, 1377–1391 (1979).Google Scholar
  42. 42.
    Watts, R. G.: Discussion of “Questions Concerning the Possible Influence of Anthropogenic CO2on Atmospheric Temperatures”. J. Appl. Met.19, 494–495 (1980).Google Scholar
  43. 43.
    Watts, R. G.: Further Discussion of “Questions Concerning the Possible Influence of Anthropogenic CO2 on Atmospheric Temperature”. J. Appl. Met.21, 243–247 (1982).Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • S. B. Idso
    • 1
  1. 1.Department of AgricultureU.S. Water Conservation LaboratoryPhoenixUSA

Personalised recommendations