Foundations of Physics

, Volume 26, Issue 9, pp 1201–1229 | Cite as

The energy distribution for a spherically symmetric isolated system in general relativity

  • A. N. Petrov
  • J. V. Narlikar


The problems of the tolal energy and quasilocalenergy density or an isolated spherically symmetric static system in general relativity (GR) are considered with examples of some exact suintions. The field formulation of GR dereloped earlier hy L. P. Grishchuk. el al. (1984). in ihe framework of which all the dynamical fields, including the gravitation field, are considered in a fixed background spacetime is used intensively. The exact Schwarzschild and Reissner Nordstrom solutions are investigated in detail, and the results are compared with those in the recent work by J. D. Brown and J. W. York. Jr. (1993) as well as discussed with respect to the principle of nonlocalization of the gravitational energy in GR. Those examples are illustrative and simple because the background is selected as Minkowski spacetime and, in fact, the field configurations are studied in the framework of special relativity. It is shown that some problems of the Schwarzschild solution which are difficult to resolve in the standard geometrical framework of GR are resolved in the framework of the field formulation.


Recent Work General Relativity Static System Energy Distribution Gravitation Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. W. Misner, K. S. Thorne, and J. A. Wheeler.Graritation (Freeman, San Francisco. 1973).Google Scholar
  2. 2.
    J. Katz and A. Ori.Class. Quantum Gravit. 7, 787 (1990).Google Scholar
  3. 3.
    J. D. Brown and J. W. York, Jr.,Phys. Rev. D 47. 1407 (1993).Google Scholar
  4. 4.
    J. W. Maluf.J. Math. Phys. 36, 4242 (1995).Google Scholar
  5. 5.
    D. Kennefick and N. O’Murchadha.Class. Quantum Gnravit. 12, 149 (1995).Google Scholar
  6. 6.
    K. Rosquist,Class. Quantum Gravit. 12, 1305 (1995).Google Scholar
  7. 7.
    J. V. Narlikr.Am. J. Phys. 62, 903 (1994).Google Scholar
  8. 8.
    K. K. Nandi and A. Islam.Am. J. Phys. 63, 251 (1995).Google Scholar
  9. 9.
    J. L. Synge,Relativity: The General Theory (North-Holland, Amsterdam, 1960).Google Scholar
  10. 10.
    L. P. Girishchuk. A. N. Petrov. and A. D. Popova.Commun. Math. Phys. 94. 379 (1984).Google Scholar
  11. 11.
    A. D. Popova and A. N. Petrov.Im. J. Mod. Phys. A 3, 2651 (1988).Google Scholar
  12. 12.
    A. N. Petrov.Class. Quantum Gravit. 10, 2663 (1993).Google Scholar
  13. 13.
    J. V. Narlikar. “Some conceptual problems in general relativity and cosmology.” in:A Random Walk in Relativity and Cosmology. N. Dadhich, J. Krishna Rao, J. V. Narlikar. and C. V. Vishevara. eds. (Wiley Eastern, New Delhi. 1985). pp. 171 183.Google Scholar
  14. 14.
    N. Dadhich, “How empty must empty space be” Report (The Third International Conference on Gravitation and Cosmology. Pune. India. December 13 19. 1995).Google Scholar
  15. 15.
    L. D. Landau and E. M. Lifshitz.The Classical Theory of Fields (Pergamon. Oxford. 1975).Google Scholar
  16. 16.
    H. Bondi.Proc. Roy. Soc. London A 281, 39 (1964).Google Scholar
  17. 17.
    R. Schoen and S.-T. Yau.Common. Math. Phys. 65. 45 (1979):79, 231 (1981).Google Scholar
  18. 18.
    E. Witten,Commun. Math. Phys. 80, 381 (1981).Google Scholar
  19. 19.
    A. N. Petrov.Int. J. Mod. Phys. D 4, 451 (1995).Google Scholar
  20. 20.
    H. Balasin and H. Nachbagauer.Class. Quantum Gravit. 10, 2271 (1993).Google Scholar
  21. 21.
    T. Regge and C. Teitelboim.Ann. Phys. (N.Y.) 88. 286 (1974).Google Scholar
  22. 22.
    A. N. Petrov,Astronom. Astrophys. Trans. 1, 195 (1992).Google Scholar
  23. 23.
    P. S. Florides.Gen. Relat. Gravit. 26, 1145 (1994).Google Scholar
  24. 24.
    N. O’Murchadha.J. Math. Phys. 27, 2111 (1986).Google Scholar
  25. 25.
    A. N. Petrov. “On the weakest falloff conditions in the metric for an isolated system”. Preprint: IUCAA-32 95 (1995).Google Scholar
  26. 26.
    J. Katz.Class. Quantum Gravit. 2, 423 (1985).Google Scholar
  27. 27.
    J. W. Maluf,J. Math. Phys. 35, 335 (1994).Google Scholar
  28. 28.
    J. Jezierski and J. Kijowski.Gen. Relat. Gravit. 22, 1283 (1990): J. M. Nester,Class. Quantum Gravit. 8, LI9 (1991): G. Bergqvist and M. Ludvigsen,Class. Quantum Gravit. 8, 697 (1991): A. J. Dugan and L. J. Mason.Phys. Rev. Lett. 67, 2119 (1991) S. Lau.Class. Quantum Gravit. 10, 2397 (1993): T. Shiromizu and M. Sugai,Class. Quantum Gravit. 11, L103 (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • A. N. Petrov
    • 1
    • 2
  • J. V. Narlikar
    • 1
  1. 1.Inter-University Centre for Astronomy and AstrophysicsPuneIndia
  2. 2.Sternberg Astronomical InstituteMoscowRussia

Personalised recommendations