Advertisement

Structural Chemistry

, Volume 7, Issue 1, pp 37–49 | Cite as

Molecular orbital study of the structure and interactions of ylidene rhodanines

  • Richard J. Loncharich
  • Jeffrey S. Nissen
  • Donald B. Boyd
Article

Abstract

Semiempirical (with the AM1 Hamiltonian) and ab initio (mainly with the 6-31G* and LANL2DZ+ +(d,p) basis sets) molecular oribital calculations show the predominant tautomer of gas phase methylidene rhodanine is 2-thioxo-4-thiazolidinone in agreement with earlier work on other types of rhodanines. Inclusion of solvation effects in the AM1 calculations corroborates with this tautomer is also preferred in aqueous solution. Energy-optimized bond lengths and angles show good agreement with those for a crystalline benzylidene rhodanine. The geometry of a hydrogen bonded dimer matches closely the crystalline state arrangement. The two N-H ⋯ O hydrogen bonds that form in the dimer. provide a stabilization energy of about - 10 kcal/mol. The interactions of methylidene rhodanine with a calcium ion are modeled with basis sets as large as LANL2DZ+ +(d,p). The preferred binding site is near the carbonyl oxygen for the neutral rhodanine and near the nitrogen and thione sulfur in a bidentate arrangement for the rhodanine anion. Implications for the interaction of benzylidene rhodanines with various possible protein and metalloprotein receptors are discussed.

Key words

Rhodanines 4-thiazolidinone-2-thiones molecular orbital calculations hydrogen bonding calcium complexes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Enchev, V.; Petkov, I.; Chorbadjiev, S.Struct. Chem. 1994,5, 225; and references therein.Google Scholar
  2. 2.
    Hilal, R.; Ead, H.; Osman, A.Appl. Spectrosc. 1978,32, 557.Google Scholar
  3. 3.
    Kovalenko, N. F.; Lysenko, G. M.; Yakimenko, V. I.; Starchenko, M. I.; Chumakova, R. P.Spektrosk. At. Mol., Tezisy Dokl. Sess. Kom. Opt. Spektrosk. Akad. Nauk Ukr. SSR 1974, 31. Andreocci. M. V.; Cauletti, C.; Sestili, L.Spectrochim. Acta A 1984,40, 1087.Google Scholar
  4. 4.
    Rang, K.; Sandstrom, J.; Thell, L.; Yang, Q.Acta Chem. Scand. 1985,B39, 123.Google Scholar
  5. 5.
    Ishida, T.; In, Y.; Inoue, M.; Tanaka, C.J. Chem. Soc, Perkin Trans 2 1990, 1085.Google Scholar
  6. 6.
    Panetta, J. A.; Benslay, D. N.; Phillips, M. L.; Towner, R. D.; Bertsch, B.; Wang, L.; Ho, P. P. K.Agents Actions 1989,27, 300. See also, Panetta, J. A. U.S. Patent 5356917, Oct. 18, 1994; European Patents 391644-A, Oct. 10, 1990, and 211670-A, Feb. 25, 1987; Bue-Valleskey, J. M.; Hunden, D. C.; Jones, C. D.; Panetta, J. A.; Shaw, W. N. European Patent 587377 A2, March 16, 1994. Phillips, M. L.; Shadle, J. K.; Ho, P. P. K.; Bertsch, B. A.; Walters, C. P.; Towner, R. D.; Wang, L. Y.; Hunden, D.; Panetta, J. A. American Chemical Society National Meeting, Los Angeles, California, Sept. 25–30, 1988, MEDI 125.Google Scholar
  7. 7.
    Boschelli, D. H.; Connor, D. T.; Kuipers, P. J.; Wright, C. D.Bioorg. Med. Chem. Lett. 1992,2, 705.Google Scholar
  8. 8.
    Hayaishi, O.; Nozaki, M.; Abbott, M. T. InThe Enzymes, Vol. XII, Oxidation-Reduction, Part B, 3rd ed.; Boyer, P. D., Ed.; Academic Press: New York, 1975, p. 150.Google Scholar
  9. 9.
    Picot, D.; Loll, P. J.; Garavito, R. M.Nature 1994,367, 243.Google Scholar
  10. 10.
    Husain, M. I.; Shukla, S.Acta Pharm. Jugosl. 1986,36(3), 311.Google Scholar
  11. 11.
    Rondeau, J.-M.; Tete-Favier, F.; Podjarny, A.; Reymann, J.-M.; Barth, P.; Biellmann, J.-F.; Moras, D.Nature 1992,355, 469.Google Scholar
  12. 12.
    Harrison, D. H.; Bohren, K. M.; Ringe, D.; Petsko, G. A.; Gabbay, K. H.Biochemistry 1994,33, 2011.Google Scholar
  13. 13.
    Navratil, O.; Kotas, J.Coll. Czech. Chem. Commun. 1965,30, 2736.Google Scholar
  14. 14.
    Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P.J. Am. Chem. Soc. 1985,107, 3902. Dewar, M. J. S.; Yuan, Y.-C.Inorg. Chem. 1990,29, 3881. Stewart, J. J. P. InReviews in Computational Chemistry; Lipkowitz, K. B.; Boyd, D. B., Eds.; VCH: New York, 1990; Vol. 1, p. 45. Zerner, M. C. InReviews in Computational Chemistry; Lipkowitz, K. B.; Boyd, D. B., Eds.; VCH: New York, 1991; Vol. 2, p. 313.Google Scholar
  15. 15.
    Cramer, C. J.; Truhlar, D. G.J. Am. Chem. Soc. 1991,113, 8305. Cramer, C. J.; Truhlar, D. G.Science 1992, 256, 213.Google Scholar
  16. 15.a
    Cramer, C. J.; Truhlar, D. G.J. Comp. Aid. Mol. Des. 1992,6, 69. Cramer, C. J.; Truhlar, D. G. AMSOL, version 1.0, Quantum Chemistry Program Exchange (QCPE), Program No. 606, Indiana University, Bloomington, Indiana 47405. Cramer, C. J.; Truhlar, D. G. InReviews in Computational Chemistry; Lipkowitz, K. B.; Boyd, D. B., Eds.; VCH: New York, 1995; Vol. 6, p. 1.Google Scholar
  17. 16.
    Hehre, W. J.; Burke, L. D.; Shusterman, A. J.A Spartan Tutorial, Wavefunction, Inc., Irvine, California, 1993.Spartan User's Manual, Wavefunction, Inc., Irvine, California, 1993.Google Scholar
  18. 17.
    Frisch, M. J.; Trucks, G. W.; Head-Gordon, M.; Gill, P. M. W.; Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.; Robb, M. A.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; DeFrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A.Gaussian 92, Revision C, Gaussian, Inc., Pittsburgh, Pennsylvania, 1992.Google Scholar
  19. 18.
    Hay, P. J.; Wadt, W. R.J. Chem. Phys. 1985,82, 270. Wadt, W. R.; Hay, P.J. J. Chem. Phys. 1985,82, 284. Hay, P. J.; Wadt, W. R.J. Chem. Phys. 1985,82, 299. Dunning, T. H., Jr.; Hay, P. J. InModern Theoretical Chemistry; Schaefer, H. F. III, Ed.; Plenum: New York, 1976, p. 1.Google Scholar
  20. 19.
    Hehre, W. J.; Ditchfield, R.; Pople, J. A.J. Chem. Phys. 1972,56, 2257.Google Scholar
  21. 20.
    Hariharan, P. C.; Pople, J. A.Theor. Chim. Acta 1973,28, 213.Google Scholar
  22. 21.
    Gordon, M. S.Chem. Phys. Lett. 1980,76, 163.Google Scholar
  23. 22.
    Greenberg, A.; Chiu, Y.-Y.; Johnson, J. L.; Liebman, J. F.Struct. Chem. 1991,2, 117. Greenberg, A.; Venanzi, C. A.J. Am. Chem. Soc. 1993,115, 6951.Google Scholar
  24. 23.
    Frisch, M. J.; Pople, J. A.; Binkley, J. S.J. Chem. Phys. 1984,80, 3265.Google Scholar
  25. 24.
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; AlLaham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacornbe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; DeFrees, D. J.; Baker, J.; Stewart, J. J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A.Gaussian 94, Revision A. 1, Gaussian, Inc., Pittsburgh, Pennsylvania, 1995.Google Scholar
  26. 25.
    Clark, T.; Chandrasekar, J.; Spitznagel, G. W.; Schleyer, P. v. R.J. Comput. Chem. 1983,4, 294.Google Scholar
  27. 26.
    Boyd, D. B. InReviews in Computational Chemistry; Lipkowitz, K. B.; Boyd, D. B., Eds.; VCH: New York, 1995; Vol. 6, p. 338. See also, Boyd, D. B. InReviews in Computational Chemistry; Lipkowitz, K. B.; Boyd, D. B., Eds.; VCH: New York, 1995; Vol. 6, p. 317.Google Scholar
  28. 27.
    Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R.Acc. Chem. Res. 1983,16, 146. Allen, F. H.; Davies, J. E.; Galloy, J. J.; Johnson, O.; Kennard, O.; Macrae, C. F.; Mitchell, E. M.; Mitchell, G. F.; Smith, J. M.; Watson, D. G.J. Chem. Inf. Comput. Sci. 1991,31, 187. Allen, F. H.; Kennard, O.Chem. Design Automation News 1993,8(1), 1.Google Scholar
  29. 28.
    Subramanian, E.Cryst. Struct. Commun. 1980,9, 693.Google Scholar
  30. 29.
    Williams, D. H.Aldrich Chim. Acta 1991,24, 71. Searle, M. S.; Williams, D. H.; Gerhard, U.J. Am. Chem. Soc. 1992,114, 10679. Scheiner, S. InReviews in Computational Chemistry; Lipkowitz, K. B.; Boyd, D. B., Eds.; VCH: New York, 1991; Vol. 2, p. 165.Google Scholar
  31. 30.
    Curtiss, L. A.; Blander, M.Chem. Rev. 1988,88, 827.Google Scholar
  32. 31.
    Politzer, P.; Murray, J. S. InReviews in Computational Chemistry; Lipkowitz, K. B.; Boyd, D. B., Eds.; VCH: New York, 1991; Vol. 2, p. 273.Google Scholar
  33. 32.
    Williams, D. E. InReviews in Computational Chemistry; Lipkowitz, K. B.; Boyd, D. B.; Eds.; VCH: New York, 1991; Vol. 2, p. 219.Google Scholar
  34. 33.
    Bachrach, S. M. InReviews in Computational Chemistry; Lipkowitz, K. B.; Boyd, D. B., Eds.; VCH: New York, 1994; Vol. 5, p. 171.Google Scholar
  35. 34.
    Miller, M. D.; Jensen, F.; Chapman, O.; Houk, K. N.J. Phys. Chem. 1989,93, 4495.Google Scholar
  36. 35.
    Loncharich, R. J.; Schwartz, T. R.; Houk, K. N.J. Am. Chem. Soc. 1987,109, 1.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Richard J. Loncharich
    • 1
  • Jeffrey S. Nissen
    • 1
  • Donald B. Boyd
    • 2
  1. 1.Lilly Research LaboratoriesEli Lilly and CompanyIndianapolis
  2. 2.Department of ChemistryIndiana University-Purdue University at IndianapolisIndianapolis

Personalised recommendations