Pharmaceutisch Weekblad

, Volume 2, Issue 1, pp 413–423 | Cite as

De rol van antibiotica bij de infectiebestrijding in de toekomst

  • M. F. Michel


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Advies van de Gezondheidsraad en de Voedingsraad (1977).Aard en betekenis van de verschillende vormen van resistentie, 54.Google Scholar
  2. Bakker-Woudenberg, I. A. J. M., J. Y. T. de Jong-Hoenderop enM. F. Michel (1979) Efficacy of antimicrobial therapy in experimental rat pneumonia: Effects of impaired phagocytosis.Infection and Immunity 25, 366.Google Scholar
  3. Bakker-Woudenberg, I. A. J. M., A. L. E. M. van Gerwen enM. F. Michel (1979) Efficacy of antimicrobial therapy in experimental rat pneumonia: Antibiotic treatment schedules in rats with impaired phagocytosis.Infection and Immunity 25, 376.Google Scholar
  4. Bodey, G. B. (1975) Infections in cancer patients.Cancer Treatment Reviews 2, 89.Google Scholar
  5. Braude, A. I., E. J. Ziegler enJ. A. McCutchen (1978) Antiserum treatment of gram-negative bacteremia.Schweiz. Med. Wochschr. 108, 1872.Google Scholar
  6. Buckley, R. H. (1977) Replacement therapy in immunodeficiency. In:R. A. Thompson (Ed.) Recent Advances in Clinical Immunology, No. 1. Churchill Livingstone, 219.Google Scholar
  7. Butterworth, D., M. Cole, G. Hanscomb enG. N. Rolinson (1979) Olivanic acids, a family of β-lactam antibiotics with β-lactamase inhibitory properties produced byStreptomyces species. 1. Detection, properties and fermentation studies.J. Antibiotics 32, 287.Google Scholar
  8. Counts, G. W. (1977) Review and control of antimicrobial usage of hospitalized patients. A recommended collaborative approach.J. Am. Med. Assoc. 238, 2170–2172.Google Scholar
  9. Degener, J. E. (1979) Persoonlijke mededeling.Google Scholar
  10. English, A. R., J. A. Retsema, A. E. Girard, J. E. Lynch enW. E. Barth (1978) CP-45,899, A β-lactamase inhibitor that extends the antibacterial spectrum of β-lactams: initial bacteriological characterization.Antimicrobial Agents and Chemotherapy 14, 414.Google Scholar
  11. Gotschlich, E. C. (1978) Bacterial meningitis: The beginning of the end.Am. J. Med. 65, 719.Google Scholar
  12. Reading, C., enM. Cole (1977) Clavulanic acid: a β-lactamase inhibiting β-lactam forStreptomyces clavuligerus.Antimicrobial Agents and Chemotherapy 11, 852.Google Scholar
  13. Richmond, M. H. (1978) Factors influencing the antibacterial action of β-lactam antibiotics.Journal of Antimicrobial Chemotherapy 4 (suppl. B), 1.Google Scholar
  14. Richmond, M. H., enR. B. Sykes (1973) The β-lactamases of Gram-negative bacteria and their possible physiological role.Advances in Microbial Physiology 9, 31–35.Google Scholar
  15. Rolinson, G. N. (1979) 6-APA and the development of the β-lactam antibiotics.Journal of Antimicrobial Chemotherapy 5, 7.Google Scholar
  16. Strauss, R. G. (1978) Therapeutic neutrophil transfusions. Are controlled studies no longer appropriate?Am. J. Med. 65, 1001.Google Scholar
  17. Sykes, R. B., enM. Matthew (1976) The beta-lactamases of gram-negative bacteria and their role in resistance to beta-lactam antibiotics.Journal of Antimicrobial Chemotherapy 2, 115.Google Scholar
  18. Wise, R., J. M. Andrews enK. A. Bedford (1978) In vitro studies of clavulanic acid in combination with penicillin, amoxycillin and carbenicillin.Antimicrobial Agents and Chemotherapy 13, 389.Google Scholar
  19. Zimmermann, W. (1979) Penetration through the gramnegative cell wall: a co-determinant of the efficacy of beta-lactam antibiotics.Int. J. Clin. Pharm. Biopharm. 17, 131.Google Scholar

Copyright information

© Bohn, Scheltema & Holkema 1980

Authors and Affiliations

  • M. F. Michel
    • 1
  1. 1.Afdeling Klinische Microbiologie, Antimicrobiële TherapieErasmus Universiteit RotterdamHolland

Personalised recommendations