Advertisement

The energetics of the general circulation of the atmosphere in southern hemisphere during the IGY part II: The cycle of the energetics of the atmosphere in southern hemisphere

  • J. Pinto Peixoto
  • J. A. M. Corte-Real
Article

Summary

The spatio-temporal distribution in the mixed space-time domain of some components of the cycle of the energetics of the general circulation in southern hemisphere during the IGY are analyzed and discussed.

Tentative box diagrams of the energy cycle are given for summer, winter and annual mean conditions, on the basis of an assumption concerning the dissipation of eddy kinetic energy. The general features of the energy cycle in southern hemisphere are similar to those observed in the northern hemisphere; the intensity of the general circulation is higher in winter. The transequatorial interactions between the two hemispheres are important specially during southern hemisphere summer. The generation of zonal available potential energy is stronger in summer, and is one of the most important sources of energy to maintain the general circulation; diabatic heating due to the release of latent heat in the phase transitions of water vapour gives the dominant contribution to the generation of zonal available potential energy. The rate of generation of eddy available potential energy, indirectly estimated, is higher in summer while the baroclinic process of transformation of zonal available potential energy into eddy available potential energy is more intense in winter. The antarctic continent seems to play an important role in the energetics of southern hemisphere; its contributions to the generation of zonal available potential energy and to the conversion of this form of energy into eddy available potential energy are noteworthy.

Keywords

Water Vapour Potential Energy Latent Heat Southern Hemisphere General Circulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Die Energetik der allgemeinen Zirkulation der Atmosphäre der Südhalbkugel im IGY. Teil II: Der Zyklus der Energetik der Atmosphäre in der südlichen Halbkugel

Zusammenfassung

Es wird eine räumliche and zeitliche Verteilung einiger Komponenten des Zyklus der Energetik der allgemeinen Zirkulation auf der Südhalbkugel im IGY analysiert und besprochen. Versuchsweise werden Diagramme für den Energiezyklus für Sommer, Winter und für den Jahresdurchschnitt auf Grund einer Annahme über die Zerstreuung der kinetischen Turbulezenergie angegeben. Die allgemeinen Verhältnisse des Energiezyklus auf der südlichen Halbkugel sind den auf der nördlichen Halbkugel beobachteten ähnlich; die Intensität der allgemeinen Zirkulation ist aber im Winter größer. Die äquator überschreitenden Wechselwirkungen zwischen den beiden Hemisphären sind speziell im Sommer der Südhemisphäre bedeutend. Die Bildung zonal verfügbarer potentieller Energie ist im Sommer stärker und sie ist eine der bedeutendsten Energiequellen für die Erhaltung der allgemeinen Zirkulation. Diabatische Erwärmung durch Auslösung von latenter Wärme beim Phasenübergang von Wasserdampf liefert den vorherrschenden Beitrag für die Bildung zonal verfügbarer potentieller Energie. Der Anteil der Bildung von verfügbarer potentieller Turbulenzenergie ist nach indirekter Schätzung im Sommer größer, während der barokline Prozeß der Umwandlung von zonal verfügbarer potentieller Energie in verfügbare potentielle Turbulenzenergie im Winter stärker ist. Der antarktische Kontinent scheint für die Energetik der südlichen Hemisphäre eine bedeutende Rolle zu spielen; seine Beiträge zur Bildung von zonal verfügbarer potentieller Energie und zur Umwandlung dieser Energieform in verfügbare potentielle Turbulenzenergie sind beachtenswert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Corte-Real, J. A. M.: O Ciclo da Energética da Circulação Geral de Atmosfera No Hemisfério Sul, Ph.D. thesis, University of Lisbon, 1977. (In Portuguese.)Google Scholar
  2. 2.
    Kung, E. C.: Diumal and Long-Term Variations of the Kinetic Energy Generation and Dissipation for a Five-Year Period. Mon. Weath. Rev.95, 593–606 (1967).Google Scholar
  3. 3.
    Lorenz, E. N.: Available Potential Energy and the Maintenance of the General Circulation. Tellus7, 157–167 (1955).Google Scholar
  4. 4.
    Newell, R. E., Kidson, J. W., Vincent, D. G., Dopplick, T. G., Ferruza, D.: The Energy Balance of the Global Atmosphere. In: The Global Circulation of the Atmosphere (Corby, G. A., ed.), pp. 42–90. London: Roy. Meteorol. Soc. 1970.Google Scholar
  5. 5.
    Newell, R. E., Kidson, J. W., Vincent, D. G., Boer, G. J.: The General Circulation of the Tropical Atmosphere and Interactions with Extratropical Latitudes, Vol. II, MIT Press, 1974.Google Scholar
  6. 6.
    Newton, C. W.: Meteorology of the Southern Hemisphere. Meteorol. Monographs, Vol. 13. American Meteorol. Soc., 1972.Google Scholar
  7. 7.
    Obasi, G. O. P.: Atmospheric Momentum and Energy Calculations for the Southern Hemisphere During the IGY, Scient. Report No. 6. Planetary Circulations Project, MIT Press, 1963.Google Scholar
  8. 8.
    Oort, A. H., Peixoto, J. P.: The Annual Cycle of the Energetics of the Atmosphere on a Planetary Scale. J. Geophys. Res.79, 2705 (1974).Google Scholar
  9. 9.
    Oort, A. H., Peixoto, J. P.: On the Variability of the Atmospheric Energy Cycle Within a 5-Year Period. J. Geophys. Res.81, 3643 (1976).Google Scholar
  10. 10.
    Peixoto, J. P.: Pole-to-Pole Water Balance for the IGY from Aerological Data. Nordic Hydrology3, 22 (1972).Google Scholar
  11. 11.
    Peixoto, J. P.: Enthalpy Distribution in the Atmosphere over the Southern Hemisphere. Riv. ital. geofis.28, 314 (1974).Google Scholar
  12. 12.
    Peixoto, J. P.: Atmospheric Vapour Flux Computations for Hydrological Purposes, WMO No. 357, Contribution to the Internat. Hydrol. Decade (IHD), 1973.Google Scholar
  13. 13.
    Peixoto, J. P.: Temperature Conditions in the Southern Hemisphere During the IGY, Scient. Rep. No. 1, Universidade de Lisboa, Institute, Geofísico do Infante D. Luis, 1973.Google Scholar
  14. 14.
    Peixoto, J. P., Oort, A. H.: The Annual Distribution of Atmospheric Energy on a Planetary Scale. J. Geophys. Res.79, 2149 (1974).Google Scholar
  15. 15.
    Peixoto, J. P.: On the Divergence of Enthalpy and the Energetics of the Southern Hemisphere, Publicação No. 11, Universidade de Lisboa, Instituto Geofísico do Infante D. Luís, 1975.Google Scholar
  16. 16.
    Peixoto, J. P., Rosen, R. D., Wu, M.: Seasonal Variability in the Pole-to-Pole Water Vapour Balance During the IGY. Nordic Hydrology7, 95 (1976).Google Scholar
  17. 17.
    Peixoto, J. P., Corte-Real, J. A. M.: The Energetics of the General Circulation of the Atmosphere in Southern Hemisphere During the IGY. Part 1: The Distribution of Atmospheric Energy. Arch. Met. Geoph. Biocl., Ser. A31, 277–301 (1982).Google Scholar
  18. 18.
    Robinson, J. B.: Meridional Eddy Flux of Enthalpy in the Southern Hemisphere During the IGY. Pageoph80, 319 (1970).Google Scholar
  19. 19.
    Starr, V. P.: Physics of Negative Viscosity Phenomena, 256 pp. New York: McGraw-Hill 1968.Google Scholar
  20. 20.
    Starr, V. P., Peixoto, J. P., McKean, R. G.: Pole-to-Pole Moisture Conditions for the IGY. Pageoph75, 300 (1969).Google Scholar
  21. 21.
    Starr, V. P., Peixoto, J. P.: Pole-to-Pole Eddy Transport of Water Vapour in the Atmosphere During the IGY. Arch. Met. Geoph. Biokl., Ser. A20, 85 (1971).Google Scholar
  22. 22.
    Taljaard, J. J., van Loon, H., Crutcher, H. L., Jenne, R. L.: Climate of the Upper Air: Southern Hemisphere, Vol. I, Navair 50-1C-55, Chief Naval Operations, Washington, D. C., 135 pp., 1969.Google Scholar
  23. 23.
    Taljaard, J. J.: Meteorology of the Southern Hemisphere. Meteorol. Monographs, Vol. 13, American Meteorol. Soc., 1972.Google Scholar
  24. 24.
    Van Loon, H., Taljaard, J. J., Jenne, R. L., Crutcher, H. L.: Climate of the Upper Air: Southern Hemisphere, Vol. II, NCAR TN/STR-57, Boulder, Colo., National Center for Atmospheric Research, 43 pp., 1971.Google Scholar
  25. 25.
    Vincent, D. G.: Seasonal Changes in the Global Atmospheric Energy Balance and Results for Restricted Regions, Ph.D. thesis, Mass. Inst. of Technol., Cambridge, Mass., 1969.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • J. Pinto Peixoto
    • 1
    • 2
  • J. A. M. Corte-Real
    • 1
    • 2
  1. 1.Instituto GeofísicoFaculdade de Ciências da Universidade de LisboaLisboaPortugal
  2. 2.Department of Atmospheric ScienceUniversity of MissouriColumbiaUSA

Personalised recommendations