Journal of Chemical Ecology

, Volume 22, Issue 9, pp 1607–1619

Electroantennogram activity from antennae ofCeratitis capitata (Wied.) to fresh orange airborne volatiles

  • M. M. Hernández
  • I. Sanz
  • M. Adelantado
  • S. Ballach
  • E. Primo


Twenty-six compounds have been identified from fresh orange airborne volatiles, the most abundant being limonene and alloaromadendrene. Ethyl- and butylhexanoates were found in middle concentrations, whereas the other compounds occur at low levels. Electroantennograms recorded fromCeratitis capitata Wied. (males and females) revealed limonene. butyl hexanoate, dihydrocarvone, and limonene oxide to be most active. In the case of dihydrocarvone, 4-ethyl acetophenone, and carvone, female antennae give greater responses than antennae of males. Limonene oxide was more active for males than females. Total airborne volatiles recovered from oranges elicited high EAGs, with females being more sensitive than males.

Key Words

Oranges fruit volatiles odor Ceratitis capitata Mediterranean fruit fly Diptera Tephritidae olfaction electroantennogram electrophysiology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anonymous. 1991. Eight Peak Index of Mass Spectra. The Royal Society of Chemistry, Cambridge.Google Scholar
  2. Binder, R. G., Benson, M. E., andFlath, R. A. 1990. Volatile components of safflower.J. Agric. Food Chem. 38:1245–1248.Google Scholar
  3. Claude-Lafontaine, A., Rouillard, M., Cassan, J., andAzzaro, M. 1976. Composés terpéniques inédits constituants de l'huile essentielle de cascarille.Bull. Soc. Chim. 1:88–90.Google Scholar
  4. Connolly, J. A., andHill, R. A. 1991. Dictionary of Terpenoids. Chapman & Hall, London.Google Scholar
  5. De Pascual Teresa, J., Urones, J. G., andFernandez, A. 1983. Monoterpene derivates from the essential oil ofAristolochia longa.Phytochemislry 22:2753–2754.Google Scholar
  6. Dickens, J. C., Jang, E. B., Light, D. M., andAlford, A. R. 1990. Enhancement of insect pheromone responses by green leaf volatiles.Naturwissenschaften 77:29–31.Google Scholar
  7. Dixon, W. J. 1992. Statistical Software Manual. University of California Press, Davis.Google Scholar
  8. Doyle, P., Maclean, I. R., Murray, R. D. H., Parker, W., andRaphael, R. A. 1965. Bridged ring system. Part VI. The total synthesis of (±)-clovene.J. Chem. Soc. 1965:1344–1351.Google Scholar
  9. Flath, R. A., Light, D. M., Jang, E. B., Mon, T. R., andJohn, J. O. 1990. Headspace examination of volatile emissions from ripening papaya (Carica papaya L., solo variety).J. Agric. Food Chem. 38:1060–1063.Google Scholar
  10. Fornasiero, U., Guiotto, A., Caporale, G., Baccichetti, F., andMusajo, L. 1969. Identificazione della sostanza attrattiva per i maschi dellaCeratitis capitata, contenunuta nell'olio essenziale dei semi diAngelica archangelica.Gazz. Chim. Ital. 99:700–710.Google Scholar
  11. Guerin, P. M., Remund, U., Boller, E. F., Del Rio, G., andKatsoyannos, B. 1983. Fruit fly electroantennogram and behaviour responses to some generally occurring fruit volatiles, pp. 248–251,in R. Cavalloro (ed.). Fruit Flies of Economic Importance. A. A. Balkema, Rotterdam.Google Scholar
  12. Hippe, C. 1987. Responses of laboratory strains ofCeratitis capitata flies to their ovipositiondeterring pheromone, pp. 149–150,in R. Cavalloro (ed.). Fruit Flies of Economic Importance. A. A. Balkema, Rotterdam.Google Scholar
  13. Jacobson, M., Uebel, E. C., andLusbey, W. R. 1984. Essential oil yields medfly attractant.Chem. Eng. News 17:22.Google Scholar
  14. Jang, E. B., Light, D. M., Flath, R. A., Nagata, J. T., andMon, T. R. 1989. Electroantennogram responses of the Mediterranean fruit fly,Ceratitis capitata to identified volatile constituents from calling males.Entomol. Exp. Appl. 50:7–19.Google Scholar
  15. Kendall, M., andStuart, A. 1976. The Advanced Theory of Statistics, Vol. III, Design and Analysis and Time-Series. Charles Griffin, London.Google Scholar
  16. Knudsen, J. T., Tollsten, L., andBergström, L. G. 1993. Floral scents—checklist of volatile compounds isolated by head-space techniques.Phytochemistry 33:253–280.Google Scholar
  17. Levinson, H. Z., Levinson, A. R., andMüller, K. 1990. Influence of some olfactory and optical properties of fruits on host location by the Mediterranean fruit fly (Ceratitis capitata Wied.).J. Appl. Entomol. 109:44–54.Google Scholar
  18. Levinson, H. Z., Levinson, A. R., andSchäfer, K. 1987. New aspects of the pheromone biology of the Mediterranean fruit fly, pp. 113–128,in R. Cavalloro (ed.). Fruit Flies of Economic Importance. A. A. Balkema, Rotterdam.Google Scholar
  19. Light, D. M., Jang, E. B., andDickens, J. C. 1988. Electroantennogram responses of the Mediterranean fruit fly,Ceratitis capitata, to a spectrum of plant volatiles.J. Chem. Ecol. 14:159–180.Google Scholar
  20. Light, D. M., Jang, E. B., andFlath, R. A. 1992. Electroantennogram responses of the Mediterranean fruit fly,Ceratitis capitata, to the volatile constituents of nectarines.Entomol. Exp. Appl. 63:13–26.Google Scholar
  21. Mateo, C., Sanz, J., andCalderon, J. 1983. Essential oil ofSideritis hirsuta.Phytochemistry 22:171–173.Google Scholar
  22. MacLeod, A. J., MacLeod, G., andSubramanian, G. 1988. Volatile aroma constituents of orange.Phytochemistry 27:2185–2188.Google Scholar
  23. Pakrashi, S. C., Ghosh Dastidar, P. P., Chakrabarty. S., andAchari, B. 1980. (125)9-7,12-Secoishwaran-12-ol, a new type of sesquiterpene fromAristolochia indica Linn.J. Org. Chem. 45:4765–4767.Google Scholar
  24. Prokopy, R. J., andRoitberg, B. D. 1984. Foraging behavior of the true fruit flies.Am. Sci. 72:41–49.Google Scholar
  25. Schreier, P., Drawert, F., Junker, A., andMick, W. 1977. Über die quantitative Zusammensetzung natürlicher und technologisch veränderter aromen.Z. Lebensm. Unters.-Forsch. 164:188–193.Google Scholar
  26. Shelly, T. E., Whittier, T. S., andKaneshiro, K. Y. 1993. Behavioral responses of Mediterranean fruit flies (Diptera: Tephritidae) to trimedlure baits: Can leks be created artifically?Ann. Entomol. Soc. Am. 86:341–351.Google Scholar
  27. Stenhagen, E., Abrahamsson, S., andMcLafferty. F. W. 1974. Registry of Mass Spectral Data. John Wiley & Sons, New York.Google Scholar
  28. Sugisawa, H., Yamamoto, M., Tamura, H., andTakagi, N. 1989. The comparison of volatile components in peel oil from four species of navel orange.Nippon Shokuhin Kogyo Gakkaishi 36:455–462.Google Scholar
  29. Tamura, H., Yang, R. H., andSugisawa, H. 1993. Aroma profiles of peel oils of acid citrus, pp. 121–136,in R. Teranishi, R. G. Buttery, and H. Sugisawa (eds). Bioactive Volatile Compounds from Plants. American Chemical Society, Washington, DC.Google Scholar
  30. Tang, J., Zhang, Y., Hartman, T. G., Rosen, R. T., andHo, C. T. 1990. Free and glycosidically bound volatile compounds in fresh celery (Apium graveolens L.).J. Agric. Food Chem. 38:1937–1940.Google Scholar
  31. Teranishi, R., Buttery, R. G., Matsumoto, K. E., Stern, D. J., Cunningham, R. T., andGolthilf, S. 1987. Recent Developments in chemical attractants for tephritid fruit fly.ACS Symp. Ser. 330:431–438.Google Scholar
  32. Warthen, J. D., Jr., andMcInnis, D. O. 1989. Isolation and identification of male medfly attractive components inLitchi chinensis stems andFicus spp. stem exudates.J. Chem. Ecol. 15:1931–1946.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • M. M. Hernández
    • 1
  • I. Sanz
    • 1
  • M. Adelantado
    • 1
  • S. Ballach
    • 2
  • E. Primo
    • 1
  1. 1.Instituto de Tecnología química, Dpto de BiotecnologíaUniversidad PolitécniaValenciaSpain
  2. 2.Dpto de Estadíslica e Investigación OperativaUniversidad PolitécnicaValenciaSpain

Personalised recommendations