Structural Chemistry

, Volume 8, Issue 1, pp 73–84 | Cite as

Physical characterization of the polymorphic variations of magnesium stearate and magnesium palmitate hydrate species

  • Stefan A. Sharpe
  • Metin Celik
  • Ann W. Newman
  • Harry G. Brittain


The anhydrate, dihydrate, and trihydrate phases of chemically pure magnesium stearate and magnesium palmitate have been prepared and characterized as to their structural characteristics. The magnesium palmitate materials were obtained as significantly larger crystals than were the magnesium stearate materials, and the crystals of the dihydrate phase of either material were found to be the most fully developed. The crystal structures of all materials were judged to be very similar to each other, differing primarily in the magnitude of the long (001) crystal spacing. Thermal analysis studies revealed that the water of hydration contained within the dihydrate phases of either magnesium stearate or magnesium palmitate was more tightly bound than was the water of hydration within the corresponding trihydrate phases. These findings provide further support for the structural picture where the water contained in these lattice structures is present between the intermolecular planes.

Key words

Magnesium stearate magnesium palmitate polymorphism hydrate formation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lachman, L.; Lieberman, H. A.; Kanig, J. L.The Theory and Practice of Industrial Pharmacy, 2nd ed.: Lea and Febiger: New York, 1976; p 306.Google Scholar
  2. 2.
    Dansereau, R.; Peck, G. E.Drug Dev. Indust. Pharm. 1987,13, 975–999.Google Scholar
  3. 3.
    Hölzer, A. W.Labo-Pharma, Prob. Tech. 1984,32, 28–36.Google Scholar
  4. 4.
    Hussain, M. S. H.; York, P.; Timmins, P.Int. J. Pharm. 1991,70, 103–109.Google Scholar
  5. 5.
    Bos, C. E.: Vromans, H.; Lerk, C. F.Int. J. Pharm. 1991,67, 39–49.Google Scholar
  6. 6.
    Leinonen, U. I.; Jalonen, H. U.; Vihervaara, P. A.; Laine, E. S. U.J. Pharm. Sci. 1992,81. 1194–1198.Google Scholar
  7. 7.
    Kikuta, J.-I.; Kitamori, N.Drug Dev. Indust. Pharm. 1994,20, 343–355.Google Scholar
  8. 8.
    Müller, B. W.; Steffens, K.-J.; List, P. H.Pharm. Ind. 1982,44, 729–734.Google Scholar
  9. 9.
    Müller, B. W.Pharm. Ind. 1977,39, 161–165.Google Scholar
  10. 10.
    Miller, T. A.; York, P.Int. J. Pharm. 1985,23, 55–67.Google Scholar
  11. 11.
    Ertel, K. D.; Carstensen, J. T.Int. J. Pharm. 1988,42, 171–180.Google Scholar
  12. 12.
    Ertel, K. D.; Carstensen, J. T.J. Pharm. Sci. 1988,77, 625–629.Google Scholar
  13. 13.
    Marwaha, S. B.; Rubinstein, M. H.Int. J. Pharm. 1988,43, 249–255.Google Scholar
  14. 14.
    Newman, A. W.; Brittain, H. G. InPhysical Characterization of Pharmaceutical Solids; Marcel Dekker: New York, 1995, pp 137–137.Google Scholar
  15. 15.
    Müller, A.Proc. R. Soc. London 1927,A114, 542–549.Google Scholar
  16. 16.
    Müller, A.; Saville, W. B.J. Chem. Soc. 1925,127, 599–601.Google Scholar
  17. 17.
    Müler, B. W.Arch. Pharm. 1977,310, 693–704.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Stefan A. Sharpe
    • 1
  • Metin Celik
    • 1
  • Ann W. Newman
    • 2
  • Harry G. Brittain
    • 3
  1. 1.School of PharmacyRutgers UniversityPiscataway
  2. 2.Bristol-Myers SquibbPharmaceutical Research InstituteNew Brunswick
  3. 3.Pharmaceutical Products DivisionOhmeda Inc.Murray Hill

Personalised recommendations