Evolutionary Ecology

, Volume 3, Issue 3, pp 240–252

Locomotor performance of hatchling fence lizards (Sceloporus occidentalis): Quantitative genetics and morphometric correlates

  • Joyce S. Tsuji
  • Raymond B. Huey
  • Fredrica H. van Berkum
  • Theodore GarlandJr
  • Ruth G. Shaw


We examined heritabilities and correlations among measures of locomotor performance (speed, stamina) and among possible morphometric determinants of performance (hindlimb span, tail length) in families of hatchling lizards (Sceloporus occidentalis). We were particularly interested in determining whether these traits were heritable and thus might potentially respond genetically to selection. Moreover, we wished to determine whether speed and stamina are negatively genetically correlated, as suggested bya priori physiological and empirical considerations. All four traits appeared to be significantly heritable. Broadsense heritabilities were 0.33–0.36 for speed, 0.35–0.36 for stamina, 0.45–0.51 for hindlimb span, and 0.46–0.47 for tail length. Contrary to expectations, speed and stamina were not negatively genetically correlated. Hindlimb span and tail length, however, were negatively genetically correlated (but not phenotypically correlated). Hindlimb span and stamina were positively phenotypically correlated. Thus, for example, selection for longer hindlimb span could potentially result in shorter tails, contrary to evolutionary predictions based only on phenotypic correlations.


Genetic correlations heritability lizards locomotion performance quantitative genetics Sceloporus occidentalis speed stamina 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold, S. J. (1981a) Behavioral variation in natural populations. I. Phenotypic, genetic and environmental correlations between chemoreceptive responses to prey in the garter snake,Thamnophis elegans.Evolution 35, 489–509.Google Scholar
  2. Arnold, S. J. (1981b) Behavioral variation in natural populations. II. The inheritance of a feeding response in crosses between geographic races of the garter snake,Thamnophis elegans.Evolution 35, 510–15.Google Scholar
  3. Arnold, S. J. (1981c) The microevolution of feeding behavior.Foraging Behaviour: Ecological Ethological and Psychological Approaches. A. Kamil and T. Sargent (eds), pp 409–53. Garland Press, New York, USA.Google Scholar
  4. Arnold, S. J. (1983) Morphology, performance and fitness.Amer. Zool. 23, 347–61.Google Scholar
  5. Arnold, S. J. (1986) Laboratory and field approaches to the study of adaptation.Predator-Prey Relationships: Perspectives and Approaches from the Study of Lower Vertebrates. M. E. Feder and G. V. Lauder (eds), pp 157–79. University of Chicago Press, Chicago, IL, USA.Google Scholar
  6. Arnold S. J. (1987) Genetic correlation and the evolution of physiology.New Directions in Ecological Physiology. M. E. Feder, A. F. Bennett, W. Burggren and R. B. Huey (eds), pp. 189–215. Cambridge University Press, Cambridge, UK.Google Scholar
  7. Arnold, S. J. and Bennett, A. F. (1984) Behavioral variation in natural populations. III. Antipredator displays in the garter snakeThamnophis radix.Anim. Behav. 32, 1108–18.Google Scholar
  8. Arnold, S. J. and Bennett, A. F. (1988) Behavioral variation in natural populations. V. Morphological correlates of locomotion in the garter snake,Thamnophis radix.Biol. J. Linn. Soc. 34, 175–190.Google Scholar
  9. Bennett, A. F., (1980a) The thermal dependence of lizard behaviour.Anim. Behav. 28, 752–62.Google Scholar
  10. Bennett, A. F. (1980b) The metabolic foundations of vertebrate behavior.Bioscience 30, 452–6.Google Scholar
  11. Boag, P. T. (1983) The heritability of external morphology in Darwin's ground, finches (Geospiza) on Isla Daphne Major, Galapagos.Evolution 37, 877–94.Google Scholar
  12. Bulmer, M. (1980)The Mathematical Theory of Quantitative Genetics. Clarendon Press, Oxford, UK.Google Scholar
  13. Christian, K. C. and Tracy, C. R. (1981) The effect of the thermal environment on the ability of hatchling Galapagos land iguanas to avoid predation during dispersal.Oecologia 49, 218–23.Google Scholar
  14. Conover, W. J., Johnson, M. E. and Johnson, M. M. (1981) A comparative study of tests for homogeneity of variances, with applications to the outer continental shelf bidding data.Technometrics 23, 351–61.Google Scholar
  15. Darwin, C. (1868)The Variation of Animals and Plants under Domestication. John Murray, London, UK.Google Scholar
  16. Falconer, D. S. (1981)Introduction to Quantitative Genetics, 2nd edn. Longman, London, UK.Google Scholar
  17. Gaffney, B. and Cunningham, E. P. (1988) Estimation of genetic trend in racing performance of thoroughbred horses.Nature 332, 722–4.Google Scholar
  18. Gans, C. (1986) Locomotion of limbless vertebrates: pattern and evolution.Herpetologica 42, 33–46.Google Scholar
  19. Garland, T., Jr (1984) Physiological correlates of locomotory performance in a lizard: An allometric approach.Amer. J. Physiol. 247 (Reg. Integ. Comp. Physiol. 16), R806-R815.Google Scholar
  20. Garland, T., Jr (1985) Ontogenetic and individual variation in size, shape, and speed in the Australian agamid lizardAmphibolurus nuchalis.J. Zool. (Lond.) (A)207, 425–39.Google Scholar
  21. Garland, T., Jr (1988) Genetic basis of activity metabolism. I. Inheritance of speed, stamina, and antipredator displays in the garter snakeThamnophis sirtalis.Evolution 42, 335–50.Google Scholar
  22. Garland, T., Jr and Else, P. (1987) Seasonal sexual, and individual variation in endurance and activity metabolism in lizards.Amer. J. Physiol. 252, (Reg. Integ. Comp. Physiol. 21), R439-R449.Google Scholar
  23. Gibbs, H. L. (1988) Heritability and selection on clutch size in Darwin's Medium Ground Finches (Geospiza fortis).Evolution 42, 750–62.Google Scholar
  24. Greenwald, O. E. (1974) Thermal dependence of striking and prey capture by gopher snakes.Copeia 1974, 141–8.Google Scholar
  25. Hailman, J. P. (1986) The heritability concept applied to wild birds.Current Ornithology Vol. 4. R. F. Johnston (ed), pp. 71–95. Plenum Press, New York, USAGoogle Scholar
  26. Heinrich, B. (1985) Men vs. women, marathoners vs. ultramarathoners.Ultrarunning 1985, 16–18.Google Scholar
  27. Hill, W. G. (1988) Why aren't horses faster?Nature 332, 678.Google Scholar
  28. Hintz, R. L. (1980) Genetics of performance in the horse.J. Anim. Sci. 51, 582–94.Google Scholar
  29. Huey, R. B. and Hertz, P. E. (1984) Is a jack-of-all-temperatures a master of none?Evolution 38, 441–4.Google Scholar
  30. Huey, R. B., and Stevenson, R. D. (1979) Integrating thermal physiology and ecology of ectotherms: A discussion of approaches.Amer. Zool. 19, 357–66.Google Scholar
  31. Huey, R. B., Schneider, W., Erie, G. L. and Stevenson, R. D. (1981) A field-portable racetrack and timer for measuring acceleration and speed of small cursorial animals.Experientia 37, 1356–7.Google Scholar
  32. Huey, R. B., Bennett, A. F., John-Alder, H. B. and Nagy, K. A. (1984) Locomotor capacity and foraging behavior of Kalahari lacertid lizards.Anim. Behav. 32, 41–50.Google Scholar
  33. Lande, R. (1979) Quantitative genetic analysis of multivariate evolution, applied to brain:body size allometry.Evolution 33, 402–16.Google Scholar
  34. Lande, R. and Arnold, S. J. (1983) The measurement of selection on correlated characters.Evolution 37, 1210–26.Google Scholar
  35. Langlois, B. (1980) Heritability, of racing ability in thoroughbreds — a review.Livestock Prod. Sci. 7, 591–605.Google Scholar
  36. Lessells, C. M. and Boag, P. T. (1987) Unrepeatable repeatabilities: A common mistake.Auk 104, 116–21.Google Scholar
  37. MacMahon, T. A. (1984)Muscles, Reflexes and Locomotion. Princeton University Press, Princeton New Jersey, USA, 331 pp.Google Scholar
  38. Mitchell-Olds, T. and Rutledge, J. J. (1986) Quantitative genetics in natural plant populations: A review of the theory.Amer. Natur. 127, 379–402.Google Scholar
  39. Mousseau, T. A. and Roff, D. A. (1987) Natural selection and the heritability of fitness components.Heredity 59, 181–97.Google Scholar
  40. Norusis, M. J. (1986)SPSS/PC+ for the IMB PC/XT/AT, SPSS, Inc., Chicago, IL, USA.Google Scholar
  41. Ojala, M. J. and Van Vleck, L. D. (1981) Measures of a racetrack performance with regard to breeding evaluation of trotters.J. Anim. Sci. 53, 611–19.Google Scholar
  42. Ryan, J. E. (1975)The Inheritance of Track Performance in Greyhounds. MA Thesis, Trinity College, Dublin, Ireland.Google Scholar
  43. Seigel, R. A., Collins, J. T. and Novak, S. S. (eds) (1987)Snakes: Ecology and Evolutionary Biology. Macmillan, New York, USA, 529 pp.Google Scholar
  44. Shaw, R. G., (1987) Maximum likelihood approaches applied to quantitative genetics of natural populations.Evolution 41, 812–26.Google Scholar
  45. Slinker, B. K. and Glantz, S. A. (1985) Multiple regression for physiological data analysis: The problem of multicollinearity.Am. J. Physiol. 249 (Reg. Integ. Comp. Physiol. 18), R1-R12.Google Scholar
  46. Snell, H. L., Jennings, R. D., Snell, H. M. and Harcourt, S. (1988). Intrapopulation variation in predatoravoidance performance of Galapagos lava lizards: The interaction of sexual and natural selection.Evol. Ecol. 2, 353–369.Google Scholar
  47. Sokal, R. R. and Rohlf, F. J. (1981)Biometry. W. H. Freemann & Company, San Francisco, California, 781 pp.Google Scholar
  48. Stearns, S. C. (1984) Heritability estimates for age and length at maturity in two populations of mosquitofish that shared ancestors in 1905.Evolution.38, 368–75.Google Scholar
  49. Tolley, E. A., Notter, D. R. and Marlowe, T. J. (1983) Heritability and repeatability of speed for 2- and 3-year-old standardbred racehorses.J. Anim. Sci 56, 1294–1305.Google Scholar
  50. Tracy, C. R., Packard, G. C. and Packard, M. J. (1978) Water relations of chelonian eggs.Physiol. Zool. 51, 378–87.Google Scholar
  51. Tsuji, J. S. (1986)Metabolic Adaptations to Temperature in Lizards of the Genus Sceloporus,from Different Latitudes. PhD Dissertation, University of Washington, Seattle, Washington, USA, 103 pp.Google Scholar
  52. van Berkum, F. H. (1988) Latitudinal patterns of the thermal sensitivity of sprint speed in lizards.Am. Natur. 132, 327–43.Google Scholar
  53. van Berkum, F. H. and Tsuji, J. S. (1987) Inter-familial differences, in sprint speed of hatchling lizards (Sceloporus occidentalis).J. Zool. (Lond.)212, 511–19.Google Scholar
  54. van Berkum, F. H., Huey, R. B., Tsuji, J. S. and Garland, T. Jr (1989) Repeatability of individual differences in locomotor performance and body size during early ontogeny of the lizardSceloporus occidentalis.Func. Ecol. 3, 97.Google Scholar
  55. Webb, P. W., (1986) Locomotion and predator-prey relationships.Predator-Prey, Relationships: Perspectives and Approaches from the Study of Lower Vertebrates. M. E. Feder and G. V. Lauder (eds) pp 24–41, University of Chicago Press, Chicago, IL, USA.Google Scholar

Copyright information

© Chapman and Hall Ltd 1989

Authors and Affiliations

  • Joyce S. Tsuji
    • 1
  • Raymond B. Huey
    • 1
  • Fredrica H. van Berkum
    • 1
  • Theodore GarlandJr
    • 1
  • Ruth G. Shaw
    • 1
  1. 1.Department of Zoology NJ-15University of WashingtonSeattleUSA
  2. 2.Department of Ecology and EvolutionState University of New YorkStony BrookUSA
  3. 3.Department of ZoologyUniversity of WisconsinMadisonUSA
  4. 4.Department of Botany and Plant SciencesUniversity of CaliforniaRiversideUSA

Personalised recommendations