Ionic movements in cell membranes in relation to the activity of the nervous system

  • Hans H. Ussing


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hodgkin, A. L., A. F. Huxley andB. Katz: Ionic currents underlying activity in the giant axon of the squid. Arch. Sci. physiol.3, 129–150 (1949).Google Scholar
  2. 2.
    ——: Currents carried by sodium and potassium ions through the membrane of the giant axons of Loligo J. Physiol. (Lond.)116, 449–472 (1952).Google Scholar
  3. 3.
    ——: The components of membrane conductance in the giant axon of Loligo. J. Physiol. (Lond.)116, 473–496 (1952).Google Scholar
  4. 4.
    ——: The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. (Lond.)116, 497–506 (1952).Google Scholar
  5. 5.
    ——: A quantitative description of membrane current and its application to conduction and exitation in nerve. J. Physiol. (Lond.)117, 500–544 (1952).Google Scholar
  6. 6.
    —, andR. D. Keynes: Movement of cations during recovery in nerve. Symp. Soc. exp. Biol.8, 423–437 (1954).Google Scholar
  7. 7.
    Caldwell, P. C., andR. D. Keynes: The utilization of phosphate bond energy for sodium extrusion from giant axons. J. Physiol. (Lond.)137, 12P-13P (1957).Google Scholar
  8. 8.
    Hodgkin, A. L., andR. D. Keynes: Active transport of cations in giant axons from Sepia and Loligo. J. Physiol. (Lond.)128, 28–60 (1955).Google Scholar
  9. 9.
    Shanes, A. M., andM. D. Berman: Kinetics of ion movement in the squid giant nerve. J. gen. Physiol.39, 279–300 (1955).PubMedCrossRefGoogle Scholar
  10. 10.
    Hodgkin, A. L.: The ionic basis of electrical activity in nerve and muscle. Biol. Rev.26, 339–409 (1951).CrossRefGoogle Scholar
  11. 11.
    Ling, G. N.: The role of phosphorous in the maintenance of the resting potential and selective ionic accumulation in frog muscle cells. In: Phosphorous Metabolism, vol. II, edit. byW. D. McElroy andB. Glass, p. 748–795. Baltimore: Johns Hopkins Press 1952.Google Scholar
  12. 12.
    Ussing, H. H.: Some aspects of the application of tracers in permeability studies. Avanc. Enzymol.13, 21–65 (1952).Google Scholar
  13. 13.
    Blinks, L. R.: Protoplasmic potentials in Halicystis. J. gen. Physiol.18, 409 (1935).PubMedCrossRefGoogle Scholar
  14. 14.
    Ussing, H. H., andK. Zerahn: Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta physiol. scand.23, 110–127 (1951).PubMedCrossRefGoogle Scholar
  15. 15.
    MacRobbie, E. A. C., andJ. Dainty: Ion transport in Nitellopsis obtusa. J. gen. Physiol.42, 335–358 (1958).PubMedCrossRefGoogle Scholar
  16. 16.
    Ussing, H. H., andB. Andersen: The relation between solvent drag and active transport of ions. Proc. third Internat. Congr. Biochem., Brussels, 1955. New York: Academic Press 1956.Google Scholar
  17. 17.
    Leaf, A.: Ion transport by the isolated bladder of the toad. Res. Comm. 3. Internat. Congr. Biochem., Brussels, 1955. New York: Academic Press 1956.Google Scholar
  18. 18.
    Chalfin, D., I. L. Cooperstein andC. A. M. Hogben: Ionic transfer across the isolated bullfrog large intestine. Fed. Proc.16, 24 (1957).Google Scholar
  19. 19.
    Dobson, A.: The forces moving sodium ions through rumen epithelium. J. Physiol. (Lond.)128, 39P-40P (1955).Google Scholar
  20. 20.
    Dobson, A., andA. T. Phillipson: The movements of ions across the reticulo-rumen sack Abstr. Comm. XXth Internat. Physiol. Congr., Brussels, 1956.Google Scholar
  21. 21.
    Ussing, H. H.: Active transport of inorganic ions. Symp. Soc. exp. Biol.8, 407 to 422 (1954).Google Scholar
  22. 22.
    —: General principles and theories of membrane transport. In: Metabolic aspects of transport across cell membranes. Edit. byQ. R. Murphy. Madison: University of Wisconsin Press 1957.Google Scholar
  23. 23.
    Koefoed-Johnsen, V., H. H. Ussing andK. Zerahn: The origin of the shortcircuit current in the adrenaline stimulated frog skin. Acta physiol. scand.27, 38–48 (1952).PubMedCrossRefGoogle Scholar
  24. 24.
    Zerahn, K.: Oxygen consumption and active sodium transport in the isolated and short-circuited frog skin. Acta physiol. scand.36, 300–318 (1956).PubMedCrossRefGoogle Scholar
  25. 25.
    Leaf, A., andA. Renshaw: Ion transport and respiration of isolated frog skin. Biochem. J.65, 82–90 (1957).PubMedGoogle Scholar
  26. 26.
    Lundeg⇘rdh, H.: Untersuchungen über die Anionenatmung. Biochem. Z.290, 104–124 (1937).Google Scholar
  27. 27.
    Chance, B., andG. R. Williams: The respiratory chain and Oxidative metabolism. Advanc. Enzymol.17, 65–134 (1956).Google Scholar
  28. 28.
    Koefoed-Johnsen, V., andH. H. Ussing: The nature of the frog skin potential. Acta physiol. scand.42, 298–308 (1958).PubMedCrossRefGoogle Scholar
  29. 29.
    Hogben, C. A. M.: Active transport of chloride by isolated frog gastric epithelium. Origin of the gastric mucosal potential. Amer. J. Physiol.180, 641–649 (1955).PubMedGoogle Scholar
  30. 30.
    Glynn, I. M.: The ionic permeability of the red cell membrane. Progr. Biophysics.8, 241–307 (1957).Google Scholar
  31. 31.
    Harris, E. J.: Linkage of sodium- and potassium active transport in human erythrocytes. Symp. Soc. exp. Biol.8, 228–241 (1954).Google Scholar
  32. 32.
    Keynes, R. D.: The ionic fluxes in frog muscle. Proc. roy. Soc. B142, 359–382 (1954).CrossRefGoogle Scholar
  33. 33.
    Linderholm, H.: Active transport of ions through frog skin with special reference to the action of certain diuretics. Acta physiol. scand. Suppl.97, 1–144 (1952).Google Scholar

Copyright information

© Springer-Verlag 1959

Authors and Affiliations

  • Hans H. Ussing
    • 1
  1. 1.Department of Biological Isotope Research, Zoophysiological LaboratoryUniversity of CopenhagenDenmark

Personalised recommendations