Advertisement

Rainfall variations of Sri Lanka Part 1: Spatial and temporal patterns

  • R. Suppiah
  • M. M. Yoshino
Article

Summary

In order to study the spatial and temporal patterns in Sri Lanka, monthly rainfall data at 29 stations for the period 1881–1980 were analysed in this study. First, Empirical Orthogonal Function analysis method was applied for the monthly rainfall anomalies. The result indicated clear dominant spatial patterns. The first eigenvector accounts for 40.2% and the second for 11.1% of the total variance explain the most apparently existing patterns with orographic influences. In particular, the former is explained by the rainfall patterns in the period between October and February (northeast monsoon), and the later by that in May to September (southwest monsoon) period. Power spectra of first eigenvector's time coefficients revealed cycles at 40, 24 and 14–15 months, while the second eigenvector's time coefficients indicated at 120 and 40 months. Lastly, a regional division by rainfall fluctuations is presented for Sri Lanka based on the space coefficients of first two eigenvectors.

Keywords

Power Spectrum Temporal Pattern Rainfall Data Empirical Orthogonal Function Rainfall Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Variationen des Niederschlags in Sri Lanka. Teil 1: Räumliche und zeitliche Verteilungsmuster

Zusammenfassung

Zur Untersuchung der räumlichen und zeitlichen Verteilungsmuster des Niederschlags in Sri Lanka werden Monatswerte von 29 Stationen aus der Periode 1881–1980 analysiert. Die Methode der Hauptkomponentenanalyse wurde auf monatliche Niederschlags-anomalien angewendet. Der erste Eigenvektor zu 40,8% und der zweite Eigenvektor zu 11,1% der totalen Varianz erklaren die am wahrscheinlichsten existierenden Muster mit orographischen Einflüssen. Im besonderen ist ersterer durch Niederschlagsmuster in der Periode zwischen Oktober und Februar (NE-Monsun) erklärt und letzterer durch die in der Periode Mai bis September (SW-Monsun). Die Spektralanal ysen der Zeitkoeffizienten des ersten Eigenvektors weisen Zyklen von 40, 24 and 14–15 Monaten auf, während die des zweiten Eigenvektors 120 and 40 Monate anzeigen. Schließlich wird, basiert auf die ersten zwei Eigenvektoren, eine regionale Einteilung von Niederschlagsfluktuationen für Sri Lanka vorgelegt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ayoade, J. O.: On the Use of Multivariate Techniques in Climatic Classification and Regionalization. Arch. Met. Geoph. Biokl., Ser. B25, 257–267 (1977).Google Scholar
  2. 2.
    Blackman, R. B., Tukey, J. W.: The Measurement of Power Spectra, p. 190. New York: Dover Publ., Inc. 1958.Google Scholar
  3. 3.
    Craddock, J. M.: A Meteorological Application of Principal Component Analysis. The Statistician15, 143–156 (1968).Google Scholar
  4. 4.
    Domrös, M.: The Agroclimate of Ceylon: a Contribution Towards the Ecology of Tropical Crops, p. 266. Wiesbaden: Franz Steiner Verlag 1974.Google Scholar
  5. 5.
    Dyer, T. G. J.: The Assignment of Rainfall Stations into Homogeneous Groups: an Application of Principal Component Analysis. Quart. J. R. Met. Soc.101, 1005–1013 (1975).CrossRefGoogle Scholar
  6. 6.
    Gregory, S.: On the Delimitation of Regional Patterns of Recent Climatic Fluctuations. Weather30, 276–287 (1975).Google Scholar
  7. 7.
    Hastenrath, S., Rosen, A.: Patterns of Indian Monsoon Rainfall Anomalies. Tellus35A, 324–331 (1983).Google Scholar
  8. 8.
    Jameson, H.: The NE-Monsoon Rains of Ceylon. Ceylon J. Sci., Sec. E2, 27–34 (1936).Google Scholar
  9. 9.
    Jayamaha, G. S.: Variation of Rainfall over Ceylon. Ceylon Geogr.13, 15–20 (1959).Google Scholar
  10. 10.
    Kendall, M.: Multivariate Analysis, p. 210. London: Charles Griffin & Comp. Ltd. 1975.Google Scholar
  11. 11.
    Lockyer, N.: On Solar Changes of Temperature and Variations in Rainfall in the Region Surrounding the Indian Ocean. Nature63, 107–109 and 128–133 (1900).Google Scholar
  12. 12.
    Pittock, A. B.: Climatic Change and Patterns of Variations in Australian Rainfall. Search6, 498–504 (1975).Google Scholar
  13. 13.
    Pittock, A. B.: Patterns of Climatic Variations in Argentina and Chile — I Precipitation, 1931–60. Mon. Weath. Rev.108, 1347–1361 (1980).CrossRefGoogle Scholar
  14. 14.
    Suppiah, R.: Rainfall Variations of Sri Lanka. M. Sc. Thesis, Institute of Geoscience, The University of Tsukuba, p. 109, 1984.Google Scholar
  15. 15.
    Thambyahpillay, G.: Rainfall Fluctuations in Ceylon. Ceylon Geogr.12, 51–74 (1958).Google Scholar
  16. 16.
    Thambyahpillay, G.: Secular Fluctuations in the Rainfall Climate of Colombo. Univ. Ceylon Rev.16, 93–106 (1958).Google Scholar
  17. 17.
    Thambyahpillay, G.: Climatological Research and Agricultural Development in the Dry Zone: The Development of Agriculture in the Dry Zone, SLAAS, Colombo, 18–28 (1967).Google Scholar
  18. 18.
    Thambyahpillay, G.: Precipitation Trends Within the Intertropical Convergence Zone: a Preliminary Observation. Climat. Notes No. 29, 126–129 (1982).Google Scholar
  19. 19.
    Thom, A. C. S.: Some Methods of Climatological Analysis. WMO Tech. Note No. 81, 1–53 (1966).Google Scholar
  20. 20.
    Yasunari, T.: Temporal and Spatial Variations of Monthly Rainfall in Java, Indonesia. Southeast Asian Stud.19, 170–186 (1981).Google Scholar
  21. 21.
    Yoshino, M. M., Suppiah, R.: Climatic Records of Monsoon Asia. Parts Ic and IIa with Appendix. Climat. Notes No. 31, 1–80 (1982).Google Scholar
  22. 22.
    Yoshino, M. M., Kayane, I., Madduma Bandara, C. M.: Climate, Water and Agriculture in Sri Lanka. Climat. Notes No. 33, 1–270 (1983).Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • R. Suppiah
    • 1
  • M. M. Yoshino
    • 1
  1. 1.Institute of GeoscienceThe University of Tsukuba, Sakura-muraNiihari-gun, Ibaraki-kenJapan

Personalised recommendations