Computing

, Volume 13, Issue 1, pp 1–15

# On the Butcher group and general multi-value methods

• E. Hairer
• G. Wanner
Article

## Abstract

This paper proves a theorem (“Theorem 6”) on the composition of, what we call, Butcher series. This Theorem is shown to be fundamental for the theory of Runge-Kutta methods: the formulas for the Taylor expansion of RK-methods and multiderivative RK-methods as well as formulas for the operation of the “Butcher group” (which describes the composition of RK-methods) are easy consequences. We do not attempt to realize the series as (generalized) Runge-Kutta methods, so we are not forced to restrict ourselves to the finite dimensional case. The theory extends to the multiderivative case as well, and the formulas remain valid for series which are not realizable as Runge-Kutta methods at all. Finally we extend the multi-value methods of J. Butcher [2] to the multiderivative case, which leads to a big class of integration methods for ordinary differential equations, including the methods of Nordsieck and Gear [3].

The defintions and notations of [4] are used throughout this paper, many of the results are proved here again.

## Keywords

Differential Equation Ordinary Differential Equation Computational Mathematic Integration Method Taylor Expansion
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

# Über die Butchergruppe und allgemeine Multi-Value Methoden

## Zusammenfassung

Es wird ein Satz (“Theorem 6”) über die Zusammensetzung von “Butcherreihen” bewiesen. Dieser Satz, so zeigt sich, ist grundlegend für die Theorie der Runge-Kutta Methoden; die Formeln für die Taylorrrihen von RK-Methoden, auch von RK-Methoden mit mehrfachen Knoten, und Formeln für die Operation der Butchergruppe ergeben sich als leichte Folgerungen. Da wir von der Betrachtung der Reihen ausgehen und nicht von den zugehörigen Runge-Kutta Methoden, gelten die hergeleiteten Formeln auch für Reihen, die durch keine Runge-Kutta Methode realisierbar sind.

Schließlich erweitern wir die Multi-Value Methoden von J. Butcher [2], welches zu einer weit größeren Klasse von Integrationsmethoden für gewöhnliche Differentialgleichungen führt. Diese enthalten z. B. die Methoden von Nordsieck und Gear [3].

In diesem Bericht werden gewisse Definitionen und Bezeichnungen von [4] benützt und viele Ergebnisse neu bewiesen.

## References

1. [1]
Butcher, J. C.: An Algebraic Theory of Integration Methods. Math. Comput.26, 79–106 (1972).Google Scholar
2. [2]
Butcher, J. C.: On the Order of Integration Methods (to appear in Math. Comput.).Google Scholar
3. [3]
Gear, C. W.: Numerical Initial Value Problems in Ordinary Differential Equations. Englewood Cliffs: Prentice-Hall. 1971.Google Scholar
4. [4]
Hairer, E., and G. Wanner: Multistep-Multistage-Multiderivative Methods for Ordinary Differential Equations. Computing11, 287–303 (1973).Google Scholar
5. [5]
Stetter, H. J.: Analysis of Discretization Methods for Ordinary Differential Equatins. Springer Tracts in Natural Philosophy, Vol.23 (1973).Google Scholar