Advertisement

Stationary, quasi- geostrophic waves of finite amplitude

  • C. Pellacani
  • A. Speranza
Article

Summary

We consider the dynamics of finite amplitude long waves in a quasi-geostrophic atmosphere. It is shown that they satisfy the well known theorems, formulated by Charney and Drazin, for vertical reflection and coupling with zonal flow. It is further shown that the typical critical level effect holds for such waves as well.

Keywords

Atmosphere Reflection Climate Change Waste Water Water Management 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Stationäre quasigeostrophische Wellen begrenzter Amplitude

Zusammenfassung

Wir betrachten die Dynamik langer Wellen mit begrenzter Amplitude in einer quasigeostrophischen Atmosphäre. Es wird gezeigt, daß sie den von Charney und Drazin formulierten Theoremen für vertikale Reflexion und Verbindung mit der zonalen Strömung genügen. Es wird ferner gezeigt, daß der typische Effekt des kritischen Niveaus auch für solche Wellen gilt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    Charney, J. G.: J. Met.4, 135 (1947).Google Scholar
  2. 2.
    Charney, J. G., Stern, M. E.: J. Atmos. Sci.19, 159 (1962).CrossRefGoogle Scholar
  3. 3.
    Charney, J. G., Drazin, P. G.: J. Geoph. Res.66, 83 (1961).Google Scholar
  4. 4.
    Lindzen, R. S.: Mon. Weath. Rev.95, 441 (1967).Google Scholar
  5. 5.
    Dickinson, R. E.: Mon. Weath. Rev.96, 405 (1968).Google Scholar
  6. 6.
    Dickinson, R. E.: J. Atmos. Sci.26, 73 (1969).CrossRefGoogle Scholar
  7. 7.
    Charney, J. G.: Dynamical Meteorology. Boston: 1973.Google Scholar
  8. 8.
    Thompson, R.: J. Met.5, 166 (1948).Google Scholar
  9. 9.
    Booker, J. R., Bretherton, F. P.: J. Fluid Mech.27, 513 (1966).Google Scholar
  10. 10.
    Benney, D. J., Bergeron, R. F.: Stud. appl. Math.48, 181 (1969).Google Scholar
  11. 11.
    Lupini, R., Pellacani, C.: Il Nuovo Cim. B29, 39 (1975).Google Scholar
  12. 12.
    Maslowe, S. A.: Stud. appl. Math.51, 1 (1973).Google Scholar
  13. 13.
    Abramovitz, M., Stegun, I. A.: Handbook of Mathematical Functions. New York: 1965.Google Scholar
  14. 14.
    Matsuno, T.: J. Atmos. Sci.28, 1479 (1971).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • C. Pellacani
    • 1
    • 2
  • A. Speranza
    • 1
    • 2
  1. 1.Dipartimento di Matematica ed InformaticaUniversità di AnconaBolognaItaly
  2. 2.Istituto di Fisica A. RighiUniversità di BolognaBolognaItaly

Personalised recommendations