Journal of Chemical Ecology

, Volume 22, Issue 7, pp 1273–1293 | Cite as

A new assay for quantifying brown algal phlorotannins and comparisons to previous methods

  • J. Lewis Stern
  • Ann E. Hagerman
  • Peter D. Steinberg
  • Frank C. Winter
  • James A. Estes


Quantitative measurement of phlorotannins (polyphenolics) in brown algae (Phaeophyta) by colorimetric assays can be confounded because: (1) most such assays also react to nonphlorotannin substances (interferences) and (2) the appropriate reference compound for such assays is not always clear, although phloroglucinol is typically used. We developed a new assay in which 2,4-dimethoxybenzaldehyde (DMBA) reacts specifically with 1,3-and 1,3,5-substituted phenols (e.g., phlorotannins) to form a colored product. This new assay, as well as eliminating the problem of measuring interferences, is inexpensive, rapid, and can be used with small sample volumes. We recommend it for all assays of phlorotannins from one or a set of closely related species where the structural types of phlorotannins present are likely to be similar among samples. It is also appropriate for broader surveys of phlorotannin levels across many species, but in this case a reference must be chosen with care. We also compared the DMBA assay to existing assays, including the Folin-Denis [both before and after the samples were mixed with polyvinylpolypyrrolidone (PVPP)] and the Prussian blue assays. PVPP was not 100% efficient (and often much less) at removing phlorotannins from solution, and its effectiveness varied among different phlorotannins. Thus, in contrast to previous studies, measuring phenolic levels in extracts before and after treatment with PVPP will not necessarily result in an interference-free measure of phlorotannins. Based on an analysis of reactive substances in red and green algae (which do not contain phlorotannins) in the Folin-Denis and Prussian blue assays, we estimate that the average level of interferences (nonphlorotannins) in brown algae measured in these two assays is on the order of 0.5% by dry weight.

Key Words

Phlorotannins DMBA Folin-Denis assay brown algae seaweeds phenolics PVPP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amico, V., Currenti, R., Oriente, G., Piatelli, M., andTringali, C. 1981. A phloroglucinol derivative from the brown algaZonaria tournefortii.Phytochemistry 20:1451–1453.Google Scholar
  2. Arnold, T., Tanner, C., andHatch, W. 1995. Phenotypic variation in polyphenol content of the tropical brown algaLobophra variegata as a function of nitrogen.Mar. Ecol. Prog. Ser. 123:177–183.Google Scholar
  3. Beress, A., Wassermann, O., Bruhn, T., Beress, L., Kraiselburd, E. N., Gonzalez, L. V., Demotta, G. E., andChavez, P. I. 1993. A new procedure for the isolation of antiHIV compounds (polysaccharides and polyphenols) from the marine algaFucus vesiculosus.J. Nat. Prod. Lloydia 56:478–488.Google Scholar
  4. Bernays, E. A., Cooper Driver, G., andBilgener, M. 1989. Herbivores and plant tannins.Adv. Ecol. Res. 19:263–302.Google Scholar
  5. Blackman, A. J., Rogers, G. I., andVolkman, J. K. 1988. Phloroglucinol derivatives from three Australian marine algae of the genusZonaria.J. Nat. Prod. 51:158–160.Google Scholar
  6. Boettcher, A. A., andTargett, N. M. 1992. Role of polyphenolic molecular size in reduction of assimilation efficiency inXiphister mucosa.Ecology 74:891–903.Google Scholar
  7. Butler, L. G. 1982. Relative degree of polymerization of sorghum tannin during seed development and maturation.J. Agric. Food Chem. 30:1090–1094.Google Scholar
  8. Butler, L. G., Price, M. L., andBrotherton, J. E. 1982. Vanillin assay for proanthocyanidins (condensed tannins): Modification of the solvent for estimation of the degree of polymerization.J. Agric. Food Chem. 30:1087–1089.Google Scholar
  9. Carlson, D. J., andMayer, L. M. 1983. Relative influences of riverine and macroalgal phenolic materials on UV absorbance in temperate coastal waters.Can. J. Fish. Aquat. 40:1258–1263.Google Scholar
  10. Coley, P. D., Bryant, J. P., andChapin, F. S. III. 1985. Resource availability and plant antiherbivore defense.Science 230:895–899.Google Scholar
  11. Feeny, P. P. 1976. Plant apparency and chemical defense, pp. 1–40,in J. W. Wallace and R. L. Mansell (eds.). Biochemical Interactions between Plants and Insects. Plenum Press, New York.Google Scholar
  12. Gerwick, W., andFenical, W. 1982. Phenolic lipids from related marine algae of the order Dictyotales.Phytochemistry 21:633–637.Google Scholar
  13. Goldstein, J. L., andSwain, T. 1963. Methods for determining the degree of polymerization of flavans.Nature 198:587–588.Google Scholar
  14. Harborne, J. B. 1991. Plant defenses against mammalian herbivory, pp. 45–60,in P. T. Palo and C. T. Robbins (eds.). The Chemical Basis of Plant Defense. CRC Press, Boca Raton, Florida.Google Scholar
  15. Haslam, E. 1989. Plant Polyphenols. Vegetable tannins Revisited. Cambridge University Press, Cambridge.Google Scholar
  16. Hay, M. E., andFenical, W. 1988. Marine plant-herbivore interactions: the ecology of chemical defense.Annu. Rev. Ecol. Syst. 19:111–145.Google Scholar
  17. Kellem, S. J., Tisch, M. H., andWalker, J. R. L. 1992. Screening of New Zealand native plants for enzyme inhibitory activities.N.Z. J. Bot. 30:199–203.Google Scholar
  18. Loomis, W. D., andBataille, J. 1966. Plant polyphenolic compounds and the isolation of plant enzymes.Phytochemistry 5:423–438.Google Scholar
  19. McMillan, C. 1984. The condensed tannins (proanthocyanidins) in sea grasses.Aquat. Bot. 8:351–357.Google Scholar
  20. Mole, S., andWaterman, P. G. 1987a. A critical analysis of techniques measuring tannins in ecological studies I. Techniques for chemically defining tannins.Oecologia 72:137–147.Google Scholar
  21. Mole, S., andWaterman, P. G. 1987b. A critical analysis of techniques for measuring tannins in ecological studies II. Techniques for biochemically defining tannins.Oecologia 72:148–156.Google Scholar
  22. Phillips, D. W. andTowers, G. H. N. 1982. Chemical ecology of red algal bromophenols: I. Temporal, interpopulational and within-thallus measurements of lanosol levels inRhodomela larix (Turner) C. Agardh.J. Exp. Mar. Biol. Ecol. 58:285–293.Google Scholar
  23. Price, M. P., andButler, L. G. 1977. Rapid visual estimation and spectrophotometric determination of tannin content ofSorghum grain.J. Agric. Food Chem. 25:1268–1273.Google Scholar
  24. Putnam, L. J., andButler, L. G. 1985. Fractionation of condensed tannins by counter-current chromatography.J. Chromatogr. 318:85–93.Google Scholar
  25. Ragan, M. A. 1985. The high molecular weight polyphloroglucinols of the marine brown algaFucus vesiculosus L: Degradative analysis.Can. J. Chem. 63:294–303.Google Scholar
  26. Ragan, M. A., andGlombitza, K.-W. 1986. Phlorotannins, brown algal polyphenols.Prog. Phycol. Res. 4:129–241.Google Scholar
  27. Ragan, M. A., andJensen, A. 1977. Quantitative studies on brown algal phenolics. I. Estimation of absolute polyphenol content inAscophyllum nodosum andFucus vesiculosus.J. Exp. Mar. Biol. Ecol. 34:245–258.Google Scholar
  28. Ribéreau-Gayon, P. 1972. Plant Phenolics. Oliver & Boyd, Edinburgh. pp. 23–53.Google Scholar
  29. Schlesinger, W. H. 1991. Biogeochemistry: An Analysis of Global Change. Academic Press, San Diego.Google Scholar
  30. Steinberg, P. D. 1989. Biogeographical variation in brown algal polyphenolics and other secondary metabolites: comparison between temperate Australasia and North America.Oecologia 78:374–383.Google Scholar
  31. Steinberg, P. D. 1992. Geographical variation in the interaction between marine herbivores and brown algal secondary metabolites, pp. 51–72,in V. J. Paul (ed.). Ecological Roles for Marine Secondary Metabolites. Cornell University Press, New York.Google Scholar
  32. Steinberg, P. D., andvan Altena, I. 1992. Tolerance of marine invertebrate herbivores to brown algal phlorotannins in temperate Australasia.Ecol. Monogr. 62:189–222.Google Scholar
  33. Stern, J. L., Hagerman, A. E., Steinberg, P. D., andMason, P. K. 1995. Phlorotannin-protein interactions. In press.Google Scholar
  34. Swain, T. 1979. Tannins, pp. 657–682,in G. A. Rosenthal, and D. H. Janzen, (eds.). Herbivores: Their Interaction with Secondary metabolites, Academic Press, New York.Google Scholar
  35. Swain, T., andHillis, W. E. 1959. The phenolic constitutents ofPrunus domestica. 1. The quantitative analysis of phenolic constituents.J. Sci. Food. Agric. 10:63–68.Google Scholar
  36. Targett, N. M., Boettcher, A. A., Targett, T. E., andVrolijk, N. H. 1995. Tropical marine herbivore assimilation of phenolic-rich plants.Oecologia 103:170–179.Google Scholar
  37. Targett, N. M., Coen, L. D., Boettcher, A. A., andTanner, C. E. 1992. Biogeographic comparisons of marine algal polyphenolics: evidence against a latitudinal trend.Oecologia 89:464–470.Google Scholar
  38. Van Alstyne, K. L. 1995. Comparison of three methods for quantifying brown algal polyphenolic compounds.J. Chem. Ecol. 21:45–58.Google Scholar
  39. van Altena, I. A., andSteinberg, P. D. 1992. Are differences in the responses between North American and Australasian marine herbivores to phlorotannins due to differences in phlorotannin structure?Biochem. Syst. Ecol. 20:493–499.Google Scholar
  40. Yates, J. L., andPeckol, P. 1993. Effect of nutrient availability and herbivory on polyphenolics in the seaweedFucus vesiculosis.Ecology 74:1757–1766.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • J. Lewis Stern
    • 1
  • Ann E. Hagerman
    • 2
  • Peter D. Steinberg
    • 1
  • Frank C. Winter
    • 3
  • James A. Estes
    • 4
  1. 1.School of Biological ScienceUniversity of New South WalesSydneyAustralia
  2. 2.Department of ChemistryMiami UniversityOxford
  3. 3.Leigh Marine LaboratoriesUniversity of AucklandWarkworthNew Zealand
  4. 4.National Biological SurveyUniversity of CaliforniaSanta Cruz

Personalised recommendations