Marine Geophysical Researches

, Volume 12, Issue 3, pp 197–214

Bathymetry of Molloy Deep: Fram Strait between Svalbard and Greenland

  • Jörn Thiede
  • Stephanie Pfirman
  • Hans-Werner Schenke
  • Wolfgang Reil
Article

Abstract

The sea floor of Fram Strait, the over 2500 m deep passage between the Arctic Ocean and the Norwegian-Greenland Sea, is part of a complex transform zone between the Knipovich mid-oceanic ridge of the Norwegian-Greenland Sea and the Nansen-Gakkel Ridge of the Arctic Ocean. Because linear magnetic anomalies formed by sea-floor spreading have not been found, the precise location of the boundary between the Eurasian and the North American plate is unknown in this region. Systematic surveying of Fram Strait with SEABEAM and high resolution seismic profiling began in 1984 and continued in 1985 and 1987, providing detailed morphology of the Fram Strait sea floor and permitting better definition of its morphotectonics. The 1984 survey presented in this paper provided a complete set of bathymetric data from the southernmost section of the Svalbard Transform, including the Molloy Fracture Zone, connecting the Knipovich Ridge to the Molloy Ridge; and the Molloy Deep, a nodal basin formed at the intersection of the Molloy Transform Fault and the Molloy Ridge. This nodal basin has a revised maximum depth of 5607 m water depth at 79°8.5′N and 2°47′E.

Key words

Fram Strait Bathymetry Molloy Deep Arctic Ocean 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Augstein, E., Hempel, G., Schwarz, J., Thiede, J., and Weigel, W., 1984, Die Expedition ARKTIS II des FS “POLARSTERN”, Ber. Polarforsch. 20, Alfred-Wegener-Institut für Polarforschung, pp. 1–192.Google Scholar
  2. Balakshin, L. L., 1959, AAAS, Preprints of the International Oceanographic Congress, 31 August–12 September, 1959, pp. 43D-31.Google Scholar
  3. BerggrenW. A. and SchnitkerD., 1983, ‘Cenozoic marine environments in the North Atlantic and Norwegian-Greenland Sea’, in BottM. H. P., SaxovS., TalwaniM., and ThiedeJ. (eds.),Structure and Development of the Greenland-Scotland Ridge, New methods and concepts, (Plenum Press) New York and London, pp. 495–548.Google Scholar
  4. BonattiE. and HamlynP. R., 1978, Mantle uplifted block in the western Indian Ocean,Science 201, 249–251.Google Scholar
  5. BonattiE. and MichaelP. J., 1989, Mantle peridotites from continental rifts to ocean basins to subduction zones,Earth Planet. Sci. Lett. 91, 297–311.CrossRefGoogle Scholar
  6. BoströmK. and ThiedeJ., 1984, YMER-80 Swedish Arctic Expedition,Medd. Stockh. Univ. Geol. Inst. 260, 1–123.Google Scholar
  7. BrownJ. R. and KarsonJ. A., 1988, Variations in axial processes on the Mid-Atlantic Ridge: the median valley of the MARK area,Mar. Geophys. Res. 10, 109–138.Google Scholar
  8. CAYTROUGH, 1979, Geological and geophysical investigation of the Mid-Cayman Rise spreading center: initial results and observations, in TalwaniM., HarrisonC., and HayesD. E. (eds.),Deep Drilling Results in the Atlantic Ocean: Ocean Crust, Maurice Ewing Series 2: Washington, D.C., American Geophys. Union, pp. 66–93.Google Scholar
  9. ChenY., 1989, A mechanical model for the inside corner uplift at a ridge-transform intersection,J. Geophys. Res. 94(B7), 9275–9282.Google Scholar
  10. CLIMAP Project Members, 1976, The surface of the ice-age earth,Science 191, 1131–1137.Google Scholar
  11. CoachmanL. K. and AagaardK., 1974, Physical oceanography of the Arctic and Subarctic Seas, in HermanY. (ed.),Marine Geology and Oceanography of the Arctic Seas (Springer-Verlag) New York, p. 1–72.Google Scholar
  12. CraneK., EldholmO., MyhreA. M., and SundvorE., 1982, Thermal implications for the evolution of the Spitsbergen Transform fault,Tectonophysics 89, 1–32.CrossRefGoogle Scholar
  13. CraneK., SundvorR., FoucherJ. P., HobartM., MyhreA. M., and LeDouaranS., 1988, Thermal evolution of the western Svalbard margin,Mar. Geophys. Res. 9, 165–194.CrossRefGoogle Scholar
  14. Crowell, J. C., 1974, Sedimentation along the San Andreas Fault, California, in Dott. R. H. and Shavers, R. H. (eds.),Modern and Ancient Geosynclinal Sedimentation, Soc. Econom. Paleont. Min., Spec. Pub.19, 292–303.Google Scholar
  15. DetrickR. S., SclaterJ. G., and ThiedeJ., 1977, The subsidence of aseismic ridges,Earth Planet. Sci. Lett. 34, 185–196.CrossRefGoogle Scholar
  16. Eggvin, J., 1963, Bathymetric chart of the Norwegian Sea and adjacent areas, Bergen Fiskeridir. Havforsk. Inst.Google Scholar
  17. EinarssonP., 1986, Seismicity along the eastern margin of the North Atlantic Plate, in VogtP. R. and TucholkeB. E. (eds.),The Western North Atlantic Region, Geol. Soc. Am., DNAG, Geology of North America, v. M, pp. 99–116. Boulder, Colorado.Google Scholar
  18. EldholmO., KarasikA. M., and ReksnesP. A., 1990, The North American plate boundary, in GrantzA., JohnsonL., and SweeneyJ. F. (eds.),The Arctic Ocean region, Geol. Soc. Am., DNAG, The Geology of North America, v. L, Boulder, Colorado (in press).Google Scholar
  19. EldholmO., SundvorE. and CraneK., 1984, Sonobuoy measurements during the YMER expedition,Norsk Polarinst. Skr. 180, 17–23.Google Scholar
  20. Eldholm, O., Thiede, J., Taylor E.et al., 1987, Norwegian Sea, Proc. Ocean Drill. Progr. 104 A, 783 pp.Google Scholar
  21. Ewing, M. and Heezen, B. C., 1956, Mid-Atlantic Ridge seismic belt, Trans. Amer. Geophys. Un. 37, pp. 343.Google Scholar
  22. FoxP. J. and GalloD. G., 1984, A tectonic model for ridgetransform ridge plate boundaries: Implications for the structure of oceanic lithosphere,Tectonophysics 104, 205–242.CrossRefGoogle Scholar
  23. FoxP. J. and GalloD. G., 1986, The active transform domain, in VogtP. R. and TucholkeB. E. (eds.),The Western North Atlatic Region, Geol. Soc. Am., DNAG, Geology of North America, v. M. pp. 157–172. Boulder, Colorado.Google Scholar
  24. Frolov, V. V. and Paseçki, V. M., 1958, Arctic Ocean Research center,Piroda. No. 8, 56–62.Google Scholar
  25. GordienkoP. A. and LaktionovA. F., 1960, Principal results of the latest oceanographic research in the Arctic Basin,Izvestiya Akad. Nauk SSSR, Geographic Series 5, 22–33. Translated by E. R. Hope.Google Scholar
  26. GrønlieG. and TalwaniM., 1978, Geophysical Atlasas: Norwegian-Greenland Sea, Vema Research Series, 4, Lamont-Doherty Geological Observatory, Palisades, New York.Google Scholar
  27. GrønlieG. and TalwaniM., 1982, The free air gravity field of the Norwegian-Greenland Sea and adjacent areas,Earth Evolution Sci. 2, 79–103.Google Scholar
  28. Hakkel', Ya. Ya., 1958, Signs of recent submarine volcanic activity in the Lomonosov Range,Piroda No. 4, 87–90 T 206 R* Google Scholar
  29. HopeE. R., 1959, Geotectonics of the Arctic Ocean and the great magnetic anomaly, J. Geophys. Res.64(4), 407–427.Google Scholar
  30. HurdleB. G. (ed.), 1986, The Nordic Seas, (Springer-Verlag) New York 777 pp.Google Scholar
  31. JohannessenO. M., JohannessenJ. A., SandvenS., and DavidsenK. L., 1986, Preliminary results of the marginal ice zone experiment (MIZEX) summer operations, in HurdleB. G. (ed.),The Nordic Seas., (Springer-Verlag), New York, pp. 665–679.Google Scholar
  32. Johansen, S. E., 1985, Hovgaardbruddsonen, Cand. scient. thesis, Univ. Bergen. 145 pp.Google Scholar
  33. JohnsonG. L. and EckhoffO. B., 1966, Bathymetry of the north Greenland Sea,Deep-Sea Res. 13, 1161–1173.Google Scholar
  34. KarsonJ. A. and DickH. J. B., 1983, Tectonics of ridge-transform intersections at the Kane Fracture Zone,Mar. Geophys. Res. 6, 51–98.CrossRefGoogle Scholar
  35. Koltermann, K. P., 1987, Die Tiefenzirkulation der Grönland-See als Folge des thermohalinen Systems des Europäischen Nordmeers, Diss, Univ. Hamburg. 287 pp.Google Scholar
  36. KongL. S., DetrickR. S., FoxP. L., MayerL. A., and RyanW. B. F., 1988, The morphology and tectonics of the MARK area from Sea Beam and Sea MARC I observations (Mid-Atlantic Ridge 23° N),Mar. Geophys. Res. 10, 59–90.Google Scholar
  37. Kristoffersen, Y. and Huseby, E. S., 1985, Multi-channel seismic reflection measurements in the Eurasian Basin, Arctic Ocean, from the US Ice Station Fram-IV, in Husebye, E. S., Johnson, G. L., and Kristoffersen, Y. (eds.),Geophysics of the Polar Regions, Tectonophysics 114 (1–4), pp. 103–115.Google Scholar
  38. LaBrecqueJ. L., KentD. V., and CandeS. C., 1977, Revised magnetic polarity time scale for Late Cretaceous and Cenozoic time,Geology 5, 330–335.CrossRefGoogle Scholar
  39. Laktionov, A. F., 1959, Bottom topography of the Greenland Sea in the region of Nansen's Sill, Piroda, 10, 95–97 (DRB translation T 333 R).Google Scholar
  40. LangsethM. G. and ZielinskiG. W., 1974, Marine heat flow measurements in the Norwegian-Greenland Sea and in the vicinity of Iceland, in KristjanssonL. (ed.),Geodynamics of Iceland and the North Atlantic Area, Kluwer Acad. Publ., Dordrecth, Holland, pp. 277–295.Google Scholar
  41. LowellJ. D., 1972, Spitsbergen Tertiary orogenic belt and the Spitsbergen Fracture Zone,Geol. Soc. Am. Bull. 83, 3091–3102.Google Scholar
  42. MacdonaldK. C., CastilloD. A., and MillerS. P., 1986, Deep-tow studies of the Vema Fracture Zone, 1. Tectonics of a major slow slipping transform fault and its intersection with the Mid-Atlantic Ridge,J. Geophys. Res. 91(B3), 3334–3354.Google Scholar
  43. MillerK. G. and TucholkeB. E., 1983, Development of Cenozoic abyssal circulation south of the Greenland-Scotland Ridge, in BottM. H. P., SaxovS., TalwaniM., and ThiedeJ. (eds.),Structure and Development of the Greenland-Scotland Ridge, New Methods and Concepts, Plenum Press, New York and London, pp. 549–590.Google Scholar
  44. Myhre, A. M., Eldholm O., and Sundvor, E., 1982, The margin between Senja and Spitsbergen fracture zones: implications from plate tectonics, in Johnson, G. L. and Sweeney, J. F. (eds.),Structure of the Arctic. Tectonophysics 89, 33–50.Google Scholar
  45. MyhreA. M. and EldholmO., 1988, The western Svalbard margin (74–80° N),Marine and Petroleum Geology 5, 134–156.CrossRefGoogle Scholar
  46. NansenF., 1904, The bathymetrical features of the North Polar Seas, with a discussion of continental shelves and previous oscillations of the shoreline, Norwegian North Polar Expedition. 1893–1896,Sci. Research v 4, 1–232.Google Scholar
  47. NeumannE.-R. and SchillingJ.-G., 1984, Petrology of basalts from the Mohns-Knipovich Ridge; The Norwegian-Greenland Sea,Contrib. Mineral. Petrol. 85, 209–223.CrossRefGoogle Scholar
  48. OhtaY., 1982, Morpho-tectonic studies around Svalbard and the northernmost Atlantic,Can. Soc. Petrol. Geol. Mem. 8, 415–429.Google Scholar
  49. PaquetteR. G., BourkeR. H., NewtonJ. F., and PerdueW. F., 1985, The East Greenland Polar Front in autumn,J. Geophys. Res. 90(C3), 4866–4882.Google Scholar
  50. PerryR. K., 1986, Bathymetry, in HurdleB. G. (ed.),The Nordic Seas, (Springer-Verlag) New York, pp. 211–234.Google Scholar
  51. PerryR. K., FlemingH. S., CherkisN. Z., FedenR. H., and VogtP. R., 1980, Bathymetry of the Norwegian-Greenland and western Barents Seas, (Map) naval Research Laboratory, Washington, D.C.Google Scholar
  52. Perry, R. K., Fleming, H. S., Weber, J. R., Kristoffersen, Y., Hall, J. K., Grantz, A., Johnson, G. L., Cherkis, N. Z., and Larsen, B., 1986, Bathymetry of the Arctic Ocean, (Map) Naval Research Laboratory — Acoustics Division, printed by the Geological Society of America.Google Scholar
  53. Phillips, J. D. and Fleming, H. S., 1978, Multi-beam sonar study of the Mid-Atlantic Ridge rift valley, 36°–37° N, Geol. Soc. Amer. Map MC-19.Google Scholar
  54. PockalnyR. A., DetrickR. S., and FoxP. J., 1988, The Morphology and Tectonics of the Kane Transform from Sea Beam Bathymetry Data,J. Geophys. Res. 93(B4), 3179–3193.Google Scholar
  55. QuadfaselD., GascardJ.-C., and KoltermannK. P., 1987, Large scale oceanography in Fram Strait during MIZEX 84',J. Geophys. Res. 92(C7), 6719–6728.Google Scholar
  56. Reil, W., 1987, Bericht über die Auswertung der bathymetrischen Aufzeichungen der Meßfahrt ARKTIS II/4, 1984 des Forschungsschiffes POLARSTERN, PRAKLA-SEISMOS AG. Hannover 30.03.1987, 7 pp.Google Scholar
  57. Savostin, L. A. and Karasik, A. M., 1981, Recent plate movements of the Arctic Basin and of northeastern Asia, in Solomon, S. C., Van der Voo, R., and Chinnery, M. A. (eds.),Quantitative Methods of Assessing Plate Motions. Tectonophysics 74, 111–145.Google Scholar
  58. SchlüterH.-U. and HinzK., 1978, The continental margin of west Spitsbergen,Polarforschung 48, 151–169.Google Scholar
  59. SeveringhausJ. P. and MacdonaldK. C., 1988, High inside corners at ridge-transform intersections,Mar. Geophys. Res. 9, 353–367.CrossRefGoogle Scholar
  60. SleepN. H. and BiehlerS., 1970, Topography and tectonics at the intersections of fracture zones and central rifts,J. Geophys. Res. 75, 2748–2752.Google Scholar
  61. SmithD. C., MorisonJ., JohannessenJ. A., and UntersteinerN., 1984, Topographic generation of an eddy at the edge of the East Greenland Current,J. Geophys. Res. 89, 8205–8208.Google Scholar
  62. SteelR. L. GjelbergJ., NøttvedtA., Helland-HansenW., KleinspehnK., and Rye-LarsenM., 1985, The Tertiary strikeslip basins and orogenic belt of Spitsbergen,Soc. Econ. Paleont. Mineral. Spec. Publ. 37, 339–359.Google Scholar
  63. StocksT., 1950, Depth conditions of the European portion of the Arctic Ocean,Hydr, Zeit. 3(1/2), 93–100.Google Scholar
  64. StroupJ. B. and FoxP. J., 1981, Geologic investigations in the Cayman Trough: evidence for thin oceanic crust along the Mid-Cayman Rise,J. Geol. 89, 395–420.Google Scholar
  65. SundvorE. and EldholmO., 1979, The western and northern margin off Svalbard,Tectonophysics 59, 239–250.CrossRefGoogle Scholar
  66. Sundvor, E., Myhre, A. M., Eldholm, O., and Austegaard, A., 1982, The Arctic west and north of Svalbard, ONS conference, Stavanger, Norway, 26 pp.Google Scholar
  67. SwiftJ. H., 1986, The Arctic waters, in HurdleB. G. (ed.),The Nordic Seas, Springer-Verlag, New York, pp. 129–153.Google Scholar
  68. Tamayo TectonicTeam, 1984, Tectonics at the intersection of the East Pacific Rise with the Tamayo Transform Fault,Mar. Geophys. Res. 6, 159–185.CrossRefGoogle Scholar
  69. TucholkeB. E. and MountainG. S., 1986, Tertiary paleoceanography of the western North Atlantic Ocean, in VogtP. R. and TucholkeB. E. (eds.),The Western North Atlantic Region Geol. Soc. Am., DNAG, Geology of North America, v. M, Boulder, Colorado, pp. 631–650.Google Scholar
  70. Vinje, T. and Finnekåsa, Ø., 1986, The ice trasport through Fram Strait,Norsk Polarinst. Skr. 186, 39 pp.Google Scholar
  71. VogtP. R., 1986, Sea floor topography, sediments and paleoenvironments and geophysical and geochemical structures of plate tectonics, in HurdleB. G. (ed.),The Nordic Seas. Springer-Verlag, New York, pp. 237–662.Google Scholar
  72. Vogt, P. R., Bernero, C., Kovacs, L., and Taylor, P., 1981, Structure and plate tectonic evolution of the marine Arctic as revealed by aeromagnetics,Oceanol. Acta, Proc. 26th Inter. Geol. Cong., paris, 1980 pp. 25–40.Google Scholar
  73. Volkov, P., 1961, New explorations of the bottom topography in the Greenland Sea, Translated from Morskoi Flot, 1961, 3, 35–37 by E. R. Hope DRB T 356 R.Google Scholar
  74. WadhamsP. and SquireV. A., 1983, An ice-water vortex at the edge of the East Greenland Current,J. Geophys. Res. 88, 2770–2780.Google Scholar
  75. Wüst, G., 1942, The morphological and oceanographic relations in the North Pole Basin, Dt. Wiss. Inst. Kopenhagen Veroeff., Ist. Ser., Arktis, No. 6, pp. 1–21.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Jörn Thiede
    • 1
  • Stephanie Pfirman
    • 1
  • Hans-Werner Schenke
    • 2
  • Wolfgang Reil
    • 3
  1. 1.GEOMARForschungszentrum für Marine Geowissenschaften der Christian-Albrechts-Universität zu KielKiel 14F.R. Germany
  2. 2.Alfred-Wegener-Institut für Polar- und MeeresforschungBremerhavenF.R. Germany
  3. 3.PRAKLA-SEISMOS AGHannover-Buchholz 51F.R. Germany

Personalised recommendations