Algebra and Logic

, Volume 32, Issue 6, pp 342–360 | Cite as

Effectively infinite classes of weak constructivizations of models

  • S. S. Goncharov


Mathematical Logic Infinite Classis Weak Constructivizations 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. J. Ash and A. Nerode, “Intrinsically recursive relations. Aspects of effective algebra,” in:Proc. Conf. Monash Univ., Australia (1981), pp. 24–41.Google Scholar
  2. 2.
    C. J. Ash and J. F. Knight, “Pairs of recursive structure,”Logic Paper,64, 1–45 (1988).Google Scholar
  3. 3.
    C. J. Ash and S. S. Goncharov, “Strong Δ20-categoricity,”Algebra Logika,24, No. 6, 718–727 (1985).Google Scholar
  4. 4.
    S. S. Goncharov, “The problem of the number of nonequivalent constructivizations,”Algebra Logika,19, No. 6, 621–639 (1980).Google Scholar
  5. 5.
    S. S. Goncharov, “The number of nonequivalent constructivizations,”Algebra Logika,16, No. 3, 257–289 (1977).Google Scholar
  6. 6.
    S. S. Goncharov, “autostability and computable families of constructivizations,”Algebra Logika,14, No. 6, 647–680 (1975).Google Scholar
  7. 7.
    S. S. Goncharov, “Autostability of models and Abelian groups,”Algebra Logika,19, No. 1, 23–44 (1980).Google Scholar
  8. 8.
    S. S. Goncharov and V. D. Dzgoev, “Autostability of models,”Algebra Logika,19, No. 1, 45–58. (1980).Google Scholar
  9. 9.
    S. S. Goncharov, “Computable classes of constructivizations for models of finite type,”Sib. Mat. Zh.,34, No. 5, 23–37 (1993).Google Scholar
  10. 10.
    V. P. Dobritsa, “Computability of some classes of algebras,”Sib. Mat. Zh.,18, No. 3, 570–579 (1977).Google Scholar
  11. 11.
    V. P. Dobritsa, “Structural properties of computable classes of constructive models,”Algebra Logika,26, No. 1, 36–62 (1987).Google Scholar
  12. 12.
    A. T. Nurtazin, “Strong and weak constructivizations and computable families,”Algebra Logika,13, No. 3, 311–323 (1974).Google Scholar
  13. 13.
    S. S. Goncharov, “Bounded theories of constructive Boolean algebras,”Sib. Mat. Zh.,17, No. 4, 797–812 (1976).Google Scholar
  14. 14.
    S. S. Goncharov, “Some properties of constructivizations for Boolean algebras,”Sib. Mat. Zh.,16, No. 2, 264–278 (1975).Google Scholar
  15. 15.
    Yu. L. Ershov,Decidability Problems and Constructive Models [in Russian], Nauka, Moscow (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • S. S. Goncharov

There are no affiliations available

Personalised recommendations