Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Conformational analysis of the antimalarial agent quinine

Abstract

Quinine, an active antimalarial compound, is one of the most abundant constituents extracted from the bark ofCinchona trees. The activity differences among structurally related molecules appear to depend on the absolute stereochemistry of some functional groups, a result that has stimulated a detailed conformational analysis of these molecules of biological interest. In the present study the potential energy surface (PES) for the antimalarial agent quinine (C20H24O2N2) has been comprehensively investigated using the molecular mechanics (MM) and quantum mechanical semiem-pirical AM1 and PM3 methods. Six distinct minimum-energy structures are located on the multidimensional PES and also characterized as true minima through harmonic frequency analysis. The relative stabilities and thermodynamic properties are reported. The coexistence of different conformers is discussed for the first time in the literature based on the calculated transition-state (TS) structures connecting the six minima located on the PES for the quinine molecule. The theoretical results reported in the present study are in agreement with the experimental proposal, based on NMR data, that there are two possible forms for the quinine molecule in solution.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Webster, Jr., L. T. InGoodman & Gilman- As bases farmacológicas da TerapÊutica, 8th ed.; Gilman, A. G.; Rall, T. W.; Nies, A. S.; Taylor, P., Eds.; Guanabara Koogan: Rio de Janeiro, 1991.

  2. 2.

    Karle, J. M.; Karle, I. L.; Gerena, L.; Milhous, W. K.Antimicrob. Agents Chemother. 1992,36(7), 1538–1544.

  3. 3.

    Prelog, U.; Wilhelm, M.Helv. Chim. Acta 1954,37(192), 1634–1660.

  4. 4.

    Hiemstra, H.; Wynberg, H.J. Am. Chem. Soc. 1981,103, 417–430.

  5. 5.

    Prakash, O.; Roy, R.; Singh, I.; Pratap, R.; Popli, S. P.; Bha-kuni, D. S.Ind. J. Chem. 1988,27B, 950–952.

  6. 6.

    Dijkstra, G. D. H.; Kellogg, R. M.; Wynberg, H.Rec. d Trav. Pays-Bas 1989,108, 195–204.

  7. 7.

    Dijkstra, G. D. H.; Kellogg, R. M.; Wynberg, H.; Svendsen, I. M.; Sharpless, K. B.J. Am. Chem. Soc. 1989, 111(21), 8069–8076.

  8. 8.

    Dijkstra, G. D. H.; Kellogg, R. M.; Wynberg, H.J. Org. Chem. 1990,55, 6121–6131.

  9. 9.

    Oleksyn, B. J.; Suszko-Purzycka, A.; Dive, G.; Lamotte-Brasseur, I.J. J. Pharmaceut. Sci. 1992,81(2), 122–127.

  10. 10.

    Pniewska, B.; Suszko-Purzycka, A.Acta Cryst. 1989,C-45, 638–642.

  11. 11. (a)

    PCMODEL 1993 Serena Software, 1st ed.; the force field used in PCMODEL is called MMX and is derived from the MM2 (QCPE-395, 1977) force field of N. L. Allinger with the pi-VESCF routines taken from MMP1 (QPCE-318), also by N. L. Allinger.

  12. 11. (b)

    MM3: Allinger, N. L.; Fan, Y.J. Comput. Chem. 1993,14, 655–666, and references cited therein.

  13. 12. (a)

    AM1: Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P.J. Am. Chem. Soc. 1985,107, 3902–3909.

  14. 12.(b)

    PM3: Stewart, J. J. P.J. Comput. Chem. 1989,10, 209–220.

  15. 13. (a)

    De Almeida, W. B.; O'Malley, P.J. J. Mol. Struct. (Theochem) 1992,253, 349–356.

  16. 13. (b)

    De Almeida, W. B.; Dos Santos, H. F.; O'Malley, P.J. Struct. Chem. 1995,6, 383–389.

  17. 14. (a)

    Rocha, W. R.; De Almeida, W. B. inVIIIth Brasilian Symposium of Theoretical Chemistry, 19–22 November, Caxambu, MG, Brazil, 1995.

  18. 14. (b)

    Rocha, W. R.; De Almeida, W. B. Unpublished results.

  19. 15.

    Mezey, P. G.Potential Energy Hypersurfaces; Elsevier Press: Amsterdam, 1987; p. 53.

  20. 16.

    Chang, G.; Guida, W. C.; Still, W. C.J. Am. Chem. Soc. 1989,111, 4379–4386.

  21. 17.

    Ferguson, D. M.; Raber, D. J.J. Am. Chem. Soc. 1989,111, 4371–4378.

  22. 18.

    Li, Z.; Scheraga, H. A.Proc. Natl. Acad. Sci. USA 1987,84, 6611.

  23. 19.

    MOPAC version 6.0; Stewart, J. J. P., Frank, J. Seiler Research Laboratory, U. S. Air Force Academy, Colorado Springs, Colorado; 1990.

  24. 20. (a)

    Rocha, W. R.; De Almeida, W. B.J. Comput. Chem. 1996, in press.

  25. 20. (b)

    Rocha, W. R.; Dos Santos, H. F.; De Almeida, W. B. To be published.

  26. 21.

    Stewart, J. J. P.J. Comput. Aided Mol. Des. 1990,4, 1–45.

  27. 22.

    Dos Santos, H. F.; De Almeida, W. B.J. Mol. Struct. (Theochem) 1995,335, 129–139.

  28. 23.

    Dos Santos, H. F.; De Almeida, W. B.; Taylor-Gomes, J.; Booth, B. L.Vibrational Spectrosc. 1995,10, 13–28.

Download references

Author information

Correspondence to Wagner B. De Almeida.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Silva, T.H.A., Oliveira, A.B. & De Almeida, W.B. Conformational analysis of the antimalarial agent quinine. Struct Chem 8, 95–107 (1997). https://doi.org/10.1007/BF02262845

Download citation

Key words

  • Conformational analysis
  • antimalarial
  • quinine