Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

AIDS-associated neurological disorders

This is a preview of subscription content, log in to check access.

References

  1. 1.

    M. J. G. Harrison and J. C. McArthur.AIDS and Neurology, Churchill-Livingstone, Edinburg (1995).

  2. 2.

    S. Koenig, H. E. Gendelman, J. M. Orenstein, et al., “Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy,”Science,233, 1089–1092 (1986).

  3. 3.

    B. A. Navia, B. D. Jordan, and R. W. Price, “The AIDS dementia complex. 1. Clinical features,”Annu. Neurol.,19, 517–524 (1986).

  4. 4.

    R. W. Price, J. Sidtis, and M. Rosenblum, “The AIDS dementia complex: some current questions,”Annu. Neurol.,23, S27-S33 (1988).

  5. 5.

    S. Ketzler, S. Weis, H. Haug, and H. Budka, “Loss of neurons in the frontal cortex in AIDS brains,”Acta Neuropathol.,80, 92–94 (1990).

  6. 6.

    I. P. Everall, P. J. Luther, and P. L. Lantos, “Neuronal loss in the frontal cortex in HIV infection,”Lancet,337, 1119–1121 (1991).

  7. 7.

    C. A. Wiley, E. Maslaih, M. Morey, et al., “Neocortical damage during HIV infection,”Annu. Neurol.,29, 651–657 (1991).

  8. 8.

    W. N. Tenhula, S. Z. Xu, M. C. Madigan, et al., “Morphometric comparisons of optic nerve axon loss in acquired immunodeficiency syndrome,”Am. J. Ophthalmol.,15, 14–20 (1992).

  9. 9.

    E. O. Freed and M. A. Martin, “The role of human immunodeficiency virus type 1 envelope glycoproteins in virus infection,”J. Biol. Chem.,270, 23883–23886 (1995).

  10. 10.

    C. D. Morrow, J. Park, and J. K. Wakefield, “Viral gene products and replication of the human immunodeficiency type 1 virus,”Am. J. Physiol.,266, C1135-C1156 (1994).

  11. 11.

    A. Roulstone, R. Lin, P. Beauparlant, et al., “Regulation of human immunodeficiency virus type 1 and cytokine gene expression in myeloid cells by NF-kB/Rel transcription factors,”Microbiol. Rev.,59, 481–505 (1995).

  12. 12.

    A. Finnegan, K. A. Roebuck, B. E. Nakai, et al., “IL-10 cooperates with TNF-alpha to activate HIV-1 from latently and acutely infected cells of monocyte/macrophage lineage,”J. Immunol.,156, 841–851 (1996).

  13. 13.

    H. S. L. M. Nottet, Y. Persidsky, V. G. Sasseville, et al., “Mechanisms for the transendothelial migration of HIV-1-infected monocytes into brain,”J. Immunol.,156, 1284–1295 (1996).

  14. 14.

    S. Weis, B. Neuhaus, and P. Mehraein, “Activation of microglia in HIV-1 infected brains is not dependent on the presence of HIV-1 antigens,”NeuroReport,5, 1514–1516 (1994).

  15. 15.

    S. A. Lipton, “Requirement for macrophages in neuronal injury induced by HIV envelope protein gp120,”NeuroReport,3, 913–915 (1992).

  16. 16.

    S. A. Lipton, “HIV displays its coat of arms,”Nature,367, 113–114 (1994).

  17. 17.

    K. Takahashi, S. L. Wesselingh, D. E. Griffin, et al., “Localization of HIV-1 in human brain using polymerase chain reactionin situ hybridization and immunocytochemistry,”Annu. Neurol.,39, 705–711 (1996).

  18. 18.

    T. Saito, L. R. Sharer, L. G. Epstein, et al., “Overexpression of Nef as a marker for restricted HIV-1 infection of astrocytes in postmortem pediatric central nervous tissues,”Neurology,44, 474–481 (1994).

  19. 19.

    C. Tornatore, R. Chandra, J. R. Berger, and E. O. Major, “HIV-1 infection of subcortical astrocytes in the pediatric central nervous system,”Neurology,44, 481–487 (1994).

  20. 20.

    S. A. Lipton and H. E. Gendelman, “Dementia associated with the acquired immunodeficiency syndrome,”New Engl. J. Med.,332, 934–940 (1995).

  21. 21.

    M. Eddleston and L. Mucke, “Molecular profile of reactive astrocytes — implication for their role in neurologic disease,”Neuroscience,54, 15–36 (1993).

  22. 22.

    D. Piani, D. B. Constam, K. Fgei, and A. Fontana, “Macrophages in the brain: friends or enemies?,”NIPS,9, 80–84 (1994).

  23. 23.

    D. Giulian, K. Vaca, and C. A. Noonan, “Secretion of neurotoxins by mononuclear phagocytes infected with HIV-1,”Science,250, 1593–1596 (1990).

  24. 24.

    W. F. Hickey and H. Kimura, “Perivascular microglial cells of the CNS are bone marrow-derived and present antigenin vivo,”Science,239, 290–292 (1988).

  25. 25.

    E. N. Benveniste, “Inflammatory cytokines within the central nervous system: sources, function, and mechanism of action,”Am. J. Physiol,263, C1-C16 (1992).

  26. 26.

    G. V. Kreutzberg, “Microglia: a sensor for pathological events in the CNS,”Trends Neurosci.,19, 312–318 (1996).

  27. 27.

    P. L. McGeer, T. Kawamata, D. G. Walker, et al., “Microglia in degenerative neurological disease,”Glia,7, 84–92 (1993).

  28. 28.

    N. A. Flaris, T. L. Densmore, M. C. Molleston, and W. F. Hickey, “Characterization of microglia and macrophages in the central nervous system of rats: definition of the differential expression of molecules using standard and novel monoclonal antibodies in normal CNS and in four models of parenchymal reaction,”Glia,7, 34–50 (1993).

  29. 29.

    D. E. Brenneman, G. L. Westbrook, S. P. Fitzgerald, et al., “Neuronal cell killing by the envelope protein of HIV and its prevention by vasoactive intestinal peptide,”Nature,335, 639–642 (1988).

  30. 30.

    E. B. Dreyer, P. K. Kaiser, J. T. Offermann, and S. A. Lipton, “HIV-1 coat protein neurotoxicity prevented by calcium channel antagonists,”Science,248, 364–367 (1990).

  31. 31.

    S. A. Lipton, N. J. Sucher, P. K. Kaiser, and E. B. Dreyer, “Synergistic effects of HIV coat protein and NMDA receptormediated neurotoxicity,”Neuron,7, 111–118 (1991).

  32. 32.

    T. Savio and G. Levi, “Neurotoxicity of HIV coat protein gp120, NMDA receptors, and protein kinase C: a study with rat cerebellar granule cell cultures,”J. Neurosci. Res.,34, 265–272 (1993).

  33. 33.

    D. Aggoun-Zouaoui, C. Charriaut-Marlangue, S. Rivera, et al., “The HIV-1 envelope protein gp120 induces neuronal apoptosis in hippocampal slices,”NeuroReport,7, 433–436 (1996).

  34. 34.

    S. M. Toggas, E. Masliah, E. M. Rockenstein, et al., “Central nervous system damage produced by expression of the HIV-1 coat protein gp120 in transgenic mice,”Nature,367, 188–193 (1994).

  35. 35.

    S. A. Lipton, “Models of neuronal injury in AIDS: another role for the NMDA receptor?,”Trends Neurosci.,15, 75–79 (1992).

  36. 36.

    V. L. Dawson, T. M. Dawson, G. R. Uhl, and S. H. Snyder, “Human immunodeficiency virus type 1 coat protein neurotoxicity mediated by nitric oxide in primary cortical cultures,”Proc. Natl. Acad. Sci. USA,90, 3256–3259 (1993).

  37. 37.

    S. C. Lee, D. W. Dickson, W. Liu, and C. F. Brosnan, “Induction of nitric oxide synthase activity in human astrocytes by interleukin-1 beta and interferon gamma,”J. Neuroimmunol.,46, 19–24 (1993).

  38. 38.

    D. Pietraforte, E. Tritarelli, U. Testa, and M. Minetti, “gp120 HIV envelope glycoprotein increases the production of nitric oxide in human monocyte-derived macrophages,”J. Leukocyte Biol.,55, 175–182 (1994).

  39. 39.

    M. Munir, L. Lu, and P. McGonigle, “Exicytotoxic cell death and delayed rescue in human neurones derived from NT2 cells,”J. Neurosci.,15, 7847–7860 (1995).

  40. 40.

    P. Wu, P. Price, B. Du, et al., “Direct cytotoxicity of HIV-1 envelope protein gp120 on human NT neurons,”NeuroReport,7, 1045–1049 (1996).

  41. 41.

    D. S. Robbins, Y. Shirazi, B. E. Drysdale, et al., “Production of cytotoxic factors for oligodendrocytes by stimulated astrocytes,”J. Immunol.,139, 2593–2597 (1987).

  42. 42.

    S. N. Wahl, J. B. Allen, N. McCartney-Frencis, et al., “Macrophage-and astrocyte-derived transforming growth factor beta as a mediator of central nervous system dysfunction in acquired immune deficiency syndrome,”J. Exp. Med., 981–991 (1991).

  43. 43.

    P. Gallo, K. Frei, C. Rordorf, et al., “Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system: an evaluation of cytokines in cerebrospinal fluid,”J. Neuroimmunol.,23, 109–116 (1989).

  44. 44.

    J. E. Merril and O. Martinez-Maza, “Cytokines in AIDS-associated neurons and immune system dysfunction,” in:Neurobiology of Cytokines, Part B, Methods in Neuroscience, E. B. DeSouza (ed.), Acad. Press, Inc., San Diego, CA (1993), pp. 243–266.

  45. 45.

    W. R. Tyor, J. D. Glass, J. W. Griffin, et al., “Cytokine expression in the brain during the acquired immuno deficiency syndrome,”Annu. Neurol.,31, 349–360 (1992).

  46. 46.

    K. W. Selmaj and C. S. Raine, “Tumor necrosis factor mediates myelin and oligodendrocyte damagein vitro,”Annu. Neurol.,23, 339–346 (1988).

  47. 47.

    W. S. T. Griffin, L. Stanley, C. Ling, et al., “Brain interleukin-1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer's disease,”Proc. Natl. Acad. Sci. USA,86, 7611–7615 (1989).

  48. 48.

    H. A. Gelbard, H. S. L. M. Nottet, S. Swindells, et al., “Platelet-activating factor: a candidate human immunodeficiency virus type 1-induced neurotoxin,”J. Virol.,68, 4628–4635 (1994).

  49. 49.

    P. Genis, M. Jett, E. W. Bernton, et al., “Cytokines and arachidonic metabolites produced during human immunodeficiency virus (HIV)-infected macrophage-astroglia interactions: implications for the neuropathogenesis of HIV disease,”J. Exp. Med.,176, 1703–1718 (1992).

  50. 50.

    J. E. Merrill and E. N. Benveniste, “Cytokines in inflammatory brain lesions: helpful and harmful,”Trends Neurosci.,16, 331–338 (1996).

  51. 51.

    S. J. Hopkins and N. J. Rothwell, “Cytokines and the nervous system I: expression and recognition,”Trends Neurosci.,18, 83–87 (1995).

  52. 52.

    N. J. Rothwell and S. J. Hopkins, “Cytokines and the nervous system II: actions and mechanisms of action,”Trends Neurosci.,18, 130–136 (1995).

  53. 53.

    N. Sakai S. Kaufman, and S. Milstien, “Parallel induction of nitric oxide and tetrahydrobiopterin synthesis by cytokines in rat glial cells,”J. Neurochem.,65, 895–902 (1995).

  54. 54.

    H. S. L. M. Nottet, M. Jett, C. R. Flanagan, et al., “Regulatory role for astrocytes in HIV-1 encephalitis: an overexpression of eicosanoids, platelet-activating factor, and tumor necrosis factoralpha by activated HIV-1-infected monocytes is attenuated by primary human astrocytes,”J. Immunol.,154, 3567–3561 (1995).

  55. 55.

    P. Shrikant, D. J. Benos, L. P. Tang, and E. N. Benveniste, “HIV glycoprotein 120 enhances intercellular adhesion molecule-1 gene expression in glial cells,”J. Immunol.,156, 1307–1314 (1996).

  56. 56.

    Y. Shao and K. D. McCarthy, “Plasticity of astrocytes,”Glia,11, 147–155 (1994).

  57. 57.

    J. S. Rudge, “Astrocyte-derived neurotrophic factors,” in:Astrocytes: Pharmacology and Function, S. M. Murphy (ed.), Academia, New York (1993), pp. 267–305.

  58. 58.

    S. M. De La Monte, D. D. Ho, R. T. Schooley, et al., “Subacute encephalomyelitis of AIDS and its relation to HTLV-III infection,”Neurology,37, 562–569 (1987).

  59. 59.

    S. A. Lipton and P. A. Rosenberg, “Excitatory amino acids as a final common pathway for neurologic disorders,”New Engl. J. Med.,330, 613–622 (1994).

  60. 60.

    K. Sugiyama, A. Brunori, and M. L. Mayer, “Glial uptake of excitatory amino acids influences neuronal survival in cultures of mouse hippocampus,”Neuroscience,32, 779–791 (1989).

  61. 61.

    P. A. Rosenberg, S. Amin, and M. Leitner, “Glutamate uptake disguises neurotoxic potency of glutamate agonists in cerebral cortex in dissociated cell culture,”J. Neurosci.,12, 56–61 (1992).

  62. 62.

    P. A. Rosenberg and E. Aizenman, “Hundred-fold increase in neuronal vuinerability to glutamate toxicity in astrocyte-poor cultures of rat cerebral cortex,”Neurosci. Lett.,103, 162–168 (1989).

  63. 63.

    D. W. Choi, “Glutamate neurotoxicity and diseases of the nervous system,”Neuron,1, 623–634 (1988).

  64. 64.

    G. L. Collingridge and W. Singer, “Excitatory amino acids and synaptic plasticity,”Trends Pharmacol. Sci.,11, 290–296 (1990).

  65. 65.

    T. V. Bliss and G. L. Collingridge, “A synaptic model of memory: long term potentiation in the hippocampus,”Nature,361, 31–39 (1993).

  66. 66.

    M. L. Mayer and G. L. Westbrook, “The physiology of excitatory amino acids in the vertebrate nervous system,”Prog. Neurobiol.,28, 197–276 (1987).

  67. 67.

    M. Hollmann, M. Hartley, and S. Heinemann, “Ca2+ permeability of KA-AMPA-gated glutamate receptor channels depends on subunit composition,”Science,252, 851–853 (1991).

  68. 68.

    W. E. G. Muller, H. C. Schroder, H. Ushijima, et al., “gp120 of HIV-1 induced apoptosis in rat cortical cell cultures: prevention by memantine,”Eur. J. Pharmacol.,226, 209–214 (1992).

  69. 69.

    S. A. Lipton, “Prospects for clinically tolerated NMDA antagonists: open-channel blockers and alternative redox states of nitric oxide,”Trends Neurosci.,16, 527–532 (1993).

  70. 70.

    S. A. Lipton, “Neuronal injury associated with HIV-1 and potential treatment with calcium channel and NMDA antagonists,”Dev. Neurosci.,16, 145–151 (1994).

  71. 71.

    R. H. P. Porter and T. Greenamyre, “Regional variations in the pharmacology of NMDA receptor channel blockers: implications of therapeutic potential,”J. Neurochem.,64, 614–623 (1995).

  72. 72.

    M. Kessler, T. Terramani, G. Linch, and M. Baudry, “A glycine site associated with N-methyl-D-aspartic acid receptors: characterization and identification of a new class of antagonists,”J. Neurochem.,52, 1319–1328 (1989).

  73. 73.

    T. W. Stone, “Neuropharmacology of quinolinic and kynurenic acids,”Pharmacol. Rev.,45, 309–379 (1993).

  74. 74.

    H. Q. Wu, H. Baran, U. Ungerstedt, and R. Schwarcz, “Kynurenic acid in the quinolinate-lesioned rat hippocampus: studiesin vitro andin vivo,”Eur. J. Neurosci.,4, 1264–1270 (1992).

  75. 75.

    M. P. Heyes, B. J. Brew, A. Martin, et al., “Quinolic acid in cerebrospinal fluid and serum in HIV-1 infection: relationship to clinical and neurological status,”Annu. Neurol.,29, 202–209 (1991).

  76. 76.

    D. A. Bender, “The kynurenine pathway of tryptophan metabolism,” in:Quinolinic Acid and Kynurenines, T. W. Stone (ed.), CRC Press, Boca Raton, FL (1989), pp. 3–38.

  77. 77.

    S. A. Lipton, “7-Chlorokynurenate ameliorates neuronal injury mediated by HIV envelope protein gp120 in rodent retinal cultures,”Eur. J. Neurosci.,4, 1411–1415, (1992).

  78. 78.

    P. Guidetti, C. L. Eastman, and R. Schwarcz, “Metabolism of [5-3H] kynurenine in the rat brainin vivo: evidence for the existence of a functional kynurenine pathway,”J. Neurochem.,65, 2621–2632 (1995).

  79. 79.

    D. B. Naritsin, K. Saito, S. P. Markey, et al., “Metabolism of L-tryptophan to kynurenate and quinolinate in the central nervous system: effects of 6-chlorotryptophan and 4-chloro-3-hydroxyanthranilate,”J. Neurochem.,65, 2217–2226 (1995).

  80. 80.

    K. H. Jhamandas, R. J. Boegman, and R. J. Beninger, “Quinolinic acid induced brain neurotransmitter deficits: modulation by endogenous excitotoxin antagonists,”Can. J. Physiol. Pharmacol,72 1473–1482 (1994).

  81. 81.

    A. M. Sardar, J. E. Bell, and G. P. Reynolds, “Increased concentrations of the neurotoxin 3-hydroxykynurenine in the frontal cortex of HIV-1-positive patients,”J. Neurochem.,64, 932–935 (1995).

  82. 82.

    A. Frandsen and A. Schousboe, “Mobilization of dantrolene-sensitive intracellular calcium pools is involved in the cytotoxicity induced by quisqualate and N-methyl-D-aspartate but not by 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl) propionate and kainate in cultured cerebral cortical neurons,”Proc. Natl. Acad. Sci. USA,89, 2590–2594 (1992).

  83. 83.

    S. A. Lipton, “Calcium channei antagonists in the prevention of neurotoxicity,”Adv. Pharmacol.,22, 271–297 (1991).

  84. 84.

    A. C. Dolphin, “Voitage-dependent calcium channels and their modulation by neurotransmitters and G proteins,”Exp. Physiol.,80, 1–36 (1995).

  85. 85.

    M. F. Beal, “Mechanisms of excitotoxicity in neurologic disease,”FASEB J.,6, 3338–3344 (1992).

  86. 86.

    J. B. Schulz, D. R. Henshaw, D. Siwek, et al., “Involvement of free radicals in excitotoxicityin vivo,”J. Neurochem.,64, 2239–2247 (1995).

  87. 87.

    J. Meldolesi, P. Vope, and T. Pozzan, “Intracellular distribution of calcium,”Trends Neurosci.,11, 449–452 (1988).

  88. 88.

    M. B. Kennedy, “Regulation of neuronal function by calcium,”Trends Neurosci.,12, 417–420 (1989).

  89. 89.

    S. S. Schreiber and M. Baudry, “Selective neuronal vulnerability in the hippocampus — a role for gene expression?,”Trends Neurosci.,18, 446–451 (1995).

  90. 90.

    A. M. Davies, “The Bcl-2 family of proteins, and the regulation of neuronal survival,”Trends Neurosci.,18, 355–358 (1995).

  91. 91.

    J. T. Coyle and P. Puttfarcken, “Oxidative stress, glutamate, and neurodegenerative disoders,”Science,162, 689–695 (1993).

  92. 92.

    M. Lafon-Cazal, S. Pietri, M. Culcasi, and J. Bockaert, “NMDA-dependent superoxide production and neurotoxicity,”Nature,364, 535–537 (1993).

  93. 93.

    C. W. Olanov, “A radical hypothesis for neurodegeneration,”Trends Neurosci.,16, 439–444 (1993).

  94. 94.

    M. A. Smith, L. M. Sayre, V. M. Monnier, and G. Perry, “Radical ageing in Alzheimer's disease,”Trends Neurosci.,18, 172–176 (1995).

  95. 95.

    J. B. Schulz, D. R. Henshaw, D. Siwek, et al., “Involvement of free radicals in excitotoxicityin vivo,”J. Neurochem.,64, 2239–2247 (1995).

  96. 96.

    P. Nicotera, G. Bellomo, and S. Orrenius, “Calcium-mediated mechanisms in chemically induced cell death,”Annu. Rev. Pharmacol.,32, 449–470 (1992).

  97. 97.

    J. P. Reeves, C. A. Bailey, and C. C. Hale, “Redox modification of sodium-calcium exchange activity in cardiac sarcolemmal vesicles,”J. Biol. Chem.,261, 4948–4955 (1986).

  98. 98.

    T. T. Rohn, T. R. Hinds, and F. F. Vincenzi, “Ion transport ATPases as targets for free radical damage,”Chem. Pharmacol.,46, 525–534 (1993).

  99. 99.

    F. Haber and J. Weiss, “The catalytic decomposition of hydrogen peroxide by iron salts,”Proc. Roy. Soc. Lond. Ser. A,147, 332–351 (1934).

  100. 100.

    M. Gerlach, D. Ben-Shachar, P. Riederer, and M. B. H. Youdim, “Altered brain metabolism of iron as a cause of neurodegenerative diseases?,”J. Neurochem.,63, 793–807 (1994).

  101. 101.

    B. Halliwell, “Reactive oxygen species and the central nervous system,”J. Neurochem.,59, 1609–1623 (1992).

  102. 102.

    C. Thery, B. Chamak, and M. Mallat, “Cytotoxic effect of brain macrophages on developing neurons,”Eur. J. Neurosci.,3, 1155–1164 (1991).

  103. 103.

    T. D. Buckman, M. S. Sutphin, and B. Mitovic, “Oxidative stress in a clonal cell line of neuronal origin: effect of antioxidant enzyme modulation,”J. Neurochem.,60, 2046–2058 (1993).

  104. 104.

    S. Desagher, J. Glowsinski, and J. Premont, “Astrocytes protect neurons from hydrogen peroxide toxicity,”J. Neurosci.,16, 2553–2562 (1996).

  105. 105.

    M. A. Verity, “Mechanisms of phospholipase A2 activation and neuronal injury,”Ann. New York Acad. Sci.,679, 110–120 (1993).

  106. 106.

    P. H. Chan, R. Kerlan, and R. A. Fishman, “Reduction of gamma-aminobutyric acid and glutamate uptake and (Na+-K+)-ATPase activity in brain slices and synaptosomes by arachidonic acid,”J. Neurochem.,40, 309–316 (1983).

  107. 107.

    B. Miller, M. Sarantis, S. F. Traynelis, and D. Attwell, “Potentiation of NMDA receptors by arachidonic acid,”Nature,355, 722–725 (1992).

  108. 108.

    G. D. Clark, L. T. Happel, C. F. Zorumski, and N. G. Bazan, “Enhancement of hippocampal excitatory synaptic transmission by platelet-activating factor,”Neuron,9, 1211–1216 (1992).

  109. 109.

    H. Bito, M. Nakamura, Z. Honda, et al., “Platelet-activating factor (PAF) receptor in rat brain: PAF mobilizes intracellular Ca2+ in hippocampal neurons,”Neuron,9, 285–294 (1992).

  110. 110.

    S. A. Lipton, Y.-B. Choi, Z.-H. Pan, et al., “A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds,”Nature,364, 626–632 (1993).

  111. 111.

    V. L. Dawson, T. M. Dawson, D. A. Bartley, et al., “Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures,”J. Neurosci.,13, 2651–2661 (1993).

  112. 112.

    H. Koprowski, Y. M. Zheng, E. Heber-Katz, et al., “In vivo expression of inducible nitric oxide synthase in experimentally induced neurologic diseases,”Proc. Natl. Acad. Sci. USA,90, 3024–3027 (1993).

  113. 113.

    M. I. Bukrinsky, H. S. L. M. Nottet, H. Schmidtmayerova, et al., “Regulation of nitric oxide synthase activity in human immunodeficiency virus type 1 (HIV-1)-infected monocytes: implications for HIV-associated neurological disease,”J. Exp. Med.,181, 735–745 (1995).

  114. 114.

    E. N. Benveniste, “Cytokine circuits in brain: implications for AIDS dementia complex,” in:HIV, AIDS, and the Brain, R. W. Price and S. W. Perry (eds.), Raven Press, New York (1994), pp. 71–80.

  115. 115.

    D. Giulian, E. Wendt, K. Vaca, and C. A. Noonan, “The envelope glycoprotein of human immunodeficiency virus type 1 stimulates release of neurotoxins from monocytes,”Proc. Natl. Acad. Sci. USA,90, 2769–2773 (1993).

  116. 116.

    D. E. Brenneman, T. Nicol, D. Warren, and L. M. Bowers, “Vasoactive intestinal peptide: a neurotrophic releasing agent and an astroglial mitogen,”J. Neurosci. Res.,25, 386–394 (1990).

  117. 117.

    D. J. Benos, B. H. Hahn, J. K. Bubien, et al., “Envelope glycoprotein gp120 of human immunodeficiency virus type 1 alters ion transport in astrocytes: implications for AIDS dementia complex,”Proc. Natl. Acad. Sci. USA,91, 494–498 (1994).

Download references

Author information

Additional information

Neirofiziologiya/Neurophysiology, Vol. 28, No. 4/5, pp. 225–234, July–October, 1996.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Magura, I.S., Rozhmanova, O.M. AIDS-associated neurological disorders. Neurophysiology 28, 178–186 (1996). https://doi.org/10.1007/BF02262781

Download citation