Advertisement

Chromatographia

, Volume 33, Issue 11–12, pp 575–580 | Cite as

Utilization of total solubility parameter for calculating retention indices of alkylbenzenes

  • Zhang Hongwei
  • Hu Zhide
Originals

Summary

A new three-parameter equation is obtained that relates gas liquid chromatographic retention indices for nonpolar and weakly polar substances such as hydrocarbons to their total solubility parameters, molar volume and the number of carbon atoms by applying the expanded solubility parameters model to gas-liquid chromatography (GLC). Regression analysis is performed according to the three-parameter equation for a number of C6−C11 alkylbenzenes on stationary phases of different polarity and at various temperatures. The regression coefficient is always higher than 0.9995 and the standard deviation lower than 3.3 i.u. For isomers, the equation is simplified to a two-parameter equation and the correlations between retention indices, total solubility parameters and molar volume are excellent. Regression analysis shows that the approach successfully predicts the retention indices of alkylbenzenes on polar and non-polar stationary phases.

Key Words

Gas chromatography Retention indices Solubility parameters Alkylbenzenes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Tarjän, Sz. Nyiredy, M. Györ, E. R. Lombosi, T. S. Lombosi, M. V. Budahegyi, S.-Y. Mészáros, J. M. Takács, J. Chromatogr.,472, 1 (1989).Google Scholar
  2. [2]
    M. B. Evans, J. K. Haken, J. Chromatogr.,472, 93 (1989).Google Scholar
  3. [3]
    H. Declercq, J. Chromatogr.122, 535 (1977).Google Scholar
  4. [4]
    J. H. Hildebrand, R. L. Scott, The Solubility of Nonelectrolytes, Dover Publication, New York, 3rd ed., 1964.Google Scholar
  5. [5]
    R. A. Keller, B. L. Karger, B. R. Snyder, Gas Chromatography 1970, Institute of Petroleum, London, 1971, p. 125.Google Scholar
  6. [6]
    B. L. Karger, L. R. Snyder, C. Econ, Anal. Chem.50, 2126 (1978).Google Scholar
  7. [7]
    L. Rohrschneider, J. Chromatogr.22, 6 (1966).Google Scholar
  8. [8]
    W. O. McReynolds, J. Chromatogr. Sci.8, 685 (1970).Google Scholar
  9. [9]
    L. Rohrschneider, J. Gas Chromatogr.6, 5 (1968).Google Scholar
  10. [10]
    R. Tijssen, H. A. Billiet, P. I. Schoenmarker, J. Chromtogr.122, 185 (1976).Google Scholar
  11. [11]
    P. Laffort, F. Patte, J. Chromatogr.126, 625 (1976).Google Scholar
  12. [12]
    A. Munafo, M. Buchmane, H. Nam-Tram, U. W. Kesselring, J. Pharm. Sci.77, 169 (1988).Google Scholar
  13. [13]
    P. H. Shetty, P. J. Youngberg, B. R. Kersten, C. F. Poole, J. Chromatogr.411, 61 (1987).Google Scholar
  14. [14]
    E. R. Adlard, A. G. Butlin, M. B. Evans, R. Hill, J. F. K. Huber, A. B. Littlewood, W. H. Mccambley, J. F. Smith, W. T. Swanton, P. A. T. Swoboda, inA. Goldup, ed., Gas Chromatotraphy, 1964, Institute of Petroleum, London, 1965, p. 313.Google Scholar
  15. [15]
    W. Engewald, L. Wennrich, Chromatographia9, 505 (1976).Google Scholar
  16. [16]
    L. Soják, J. A. Rijks, J. Chromatogr.119, 505 (1976).Google Scholar
  17. [17]
    V. Svob, D. Deur-Siftab, J. Chromatogr.91, 677 (1974).Google Scholar
  18. [18]
    V. A. Gerasimenko, A. V. Kirilenko, V. M. Nabiva, J. Chromatogr.208, 9 (1981).Google Scholar
  19. [19]
    Sun Zhaolin, Liu Mancang, Hu Zhide, Fen Xi Ce Shi Tong Bao7, 15 (1988).Google Scholar
  20. [20]
    R. C. Weast, M. J. Astle, CRC Handbook of Chemistry and Physics, 63rd 1982–1983.Google Scholar
  21. [21]
    Sun Zhaolin, Liu Mancang, Hu Zhide, Fen Xi Ce Shi Tong Bao8, 1 (1989).Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1992

Authors and Affiliations

  • Zhang Hongwei
    • 1
  • Hu Zhide
    • 1
  1. 1.Department of ChemistryLanzhou UniversityLanzhou, GansuP.R. China

Personalised recommendations